
1

Lambda Calculus
Mattox Beckman

Introduction and Objectives

There are three major paradigms of programming languages that are popular
today (and a couple more worth your consideration). Each of these paradigms
can be reduced to a specific model of computation. In this chapter we will
consider the λ-calculus, which is the model of computation for the functional
programming languages.

When you are done reading this and working through the exercises, you
should be able to explain the three constructs that are part of λ-calculus,
show how to simulate arithmetic and recursion, and explain why a computer
scientist should be concerned with a theoretical language that can’t even be
bothered to have integers or booleans.

The Language

Alonzo Church and Stephen Kleene developed λ-calculus in the 1930’s
to reason about the properties of functions. By giving a fully general set of
rules for evaluating a function we are able to reason about the computational
aspects of functions. (An alternative is to think of functions as a set of pairs
of arguments and values. In this case we emphasize the relation between an
argument and a value rather than the computation necessary to convert an
argument to a value.)

To this day λ-calculus is very popular with programming language re-
searchers. This is for two reasons. First, λ-calculus is Turing complete—any
computation that can be done in a “real” language can be done in λ-calculus.
Second, the language is very small, allowing us to focus on the features we
want to study without being distracted by the mechanics of the language itself.
It is sometimes called “the little white mouse” of programming language
research.

The set of lambda terms Λ consists of variables, functions, and function
applications. LetM andN represent an arbitrary lambda terms and x repre-
sent an arbitrary variable. Then we can define the syntax of Λ as:

Λ ::= x variables
MN function application
λx.M functions, a.k.a. λ abstractions

A variable in our presentation of λ-calculus will be a symbol of one letter,
possibly with “decorations” such as superscripts, subscripts, primes, etc. So,
x, y3, xn, a′, ẑ are all examples of valid variable names. a3, foo, and bar are
not valid, because their names are more than one symbol long.

2

A function application is denoted by juxtaposition. We will usually not
separate terms with spaces, and instead “run them together.” This works
because all variable names will be one letter long.

Here are some example function applications: fx, a(mn), fxy The first
example is f applied to x. The second example appliesm to n, and then
applies a to that result. The third example applies f to two variables x and y.
Function application associates to the left, so abcd is the same as ((ab)c)d.

A function is denoted by the Greek letter λ (pronounced LAM-duh),
followed by a parameter name(s), then a period, and then the body of the
function. The usual convention is that the body of the function extends as far
as it can go. Functions are also called λ-abstractions or just abstractions.

Here are some example functions:
λx.x The identity function.
λa.λb.a Takes two arguments and returns the first
λf.λx.f(fx) Takes two arguments and applies the first one to the

second one twice.
It is common to “stack up” parameters of adjacent λ’s. So
λa.λb.a ≡ λab.a

λf.λx.f(fx) ≡ λfx.f(fx)

In longer expressions you may need parentheses to be sure that they are
interpreted correctly.

λx.xλy.y This is a function that applies x to the identity.
(λx.x)λy.y This is the identity function applied to the identity

function.

Question 1: Which of the following are valid λ expressions?
λx.xyz

λx.λy.

a

xλwy.y

xλ

λλxz.zx

(abcd)(efgh)ijλklm.mkl

Free and Bound Variables

When a variable is listed between the λ and the dot, i.e., it is a parameter of a
function, then we say that the variable is bound to that particular λ. It is pos-
sible for there to be more than one λ-binding a variable with the same name.
These are counted as two separate variables. 1 In such a case, a particular 1 Many authors forbid the use of the

same variable name in more than one
λ to avoid this confusion.

variable in an expression is bound by the nearest enclosing λ. If a variable is
not bound by any λ we say that it is free.

3

λx.x λy.y The x is bound to the first λ.
(λx.(λx.x) x The first x is bound to the second λ, and the second x

is bound to the first λ.
λy.λz.x The variable x is free.

A free variable will not be given a value by the enclosing expression. You
can think of them as being “global.”

Question 2: In the following expressions, first use parenthesis to make clear
the extent of each λ abstraction, and then indicate to which λ the variable x is
bound.

For example, in λx.λz.x, we could parenthesize it as (λx.(λz.x)), and the
x is bound to the first λ.

λx.λy.x

λx.λx.x

λx.xλy.x

λx.xλx.x

λz.xλy.x

λz.xλx.x

Evaluating Expressions using β-reductions

There is only one operation in λ-calculus: β-reduction (sometimes spelled as
beta-reduction). A β-reduction occurs when you have a λ abstraction applied
to another λ term. For example, (λx.x)y is reducible to y. The terms (λx.xy)
and xλy.y are not reducible. The first because there is only an abstraction,
but nothing after it; the second because the x is not an abstraction.

Be careful when the λ abstraction and the term following it are both ar-
guments to another term. In the term x(λy.y)z, the (λy.y) and z are both
arguments to x. The λy.y is not being applied to z.

Here’s how to perform a β-reduction. Remove the initial λ and its pa-
rameter. Then, in the body of that function, replace all occurrences of that
variable with the argument. So, any variable that was bound the that lambda
gets replaced. Mathematically, we would say

(λx.M)N → [N/x]M

Where [N/x]M mean “replace all x’s inM that were bound to the
lambda byN .” It might help to think of using an editor to do a search and
replace.

Another notation you might see is this one:

(λx.M)N → M [x := N]

It has the same meaning.

4

Here are a few examples of β reductions. Sometimes one reduction is
followed by another one.

(λx.x)y → y

(λz.x)y → x

(λz.azbz)y → ayby

(λx.(λz.z)x)y → (λz.z)y → y

(λx.x(λz.ax)(λx.bx))y → y(λz.ay)(λx.bx)

(λx.(λz.zx)(λx.bx))y → (λz.zy)(λx.bx) → (λx.bx)y → by

Question 3: Try doing these reductions. Reduce each expression as much
as you can.

(λx.xx)y

(λx.axxa)y

(λx.(λz.zx)q)y

(λx.x((λz.zx)(λx.bx)))y

(λa.a)(λb.b)(λc.cc)(λd.d)

A note about reduction order You might be wondering what to do if you
have a choice about which application to make. Consider this example:

(λx.x((λy.y)x))((λa.a)(λb.b))

We will be using normal order reduction, which says that the leftmost, outer-
most reduction is performed first. In this case, the λx is applied first.

Another option is applicative order. In that system, the leftmost, innermost
reduction is performed first. This would be the λa reduction. Essentially,
this is “call by value,” as the arguments to a function are evaluated before the
function is called.

For now, we are not going to emphasize the different reduction orders. Use
normal order reduction for everything, i.e., don’t reduce the arguments before
calling the function.

Finally, consider this example:

(λx.x((λy.y)x))

Do we do the λy reduction or not? In other words, do we do computation
inside of a function before the function has been called? Most languages
say “no.”2 If we say “yes,” then we get λx.xx, and say that the result is in 2 This is known as weak head normal

form, but we are not going to talk
about that in this course.

normal form. This is the style we will use.

Alpha Capture and Renaming

Consider the following two λ terms:

X ≡ (λa.λb.ab) andY ≡ (λw.λx.wx)

5

Clearly (we hope!) termsX and Y do not differ at all in meaning. The
names of the variables are different, but what these functions actually do when
you apply them is identical. When two terms have the same structure and
differ only in the names of the variables, they are said to be α-equivalent. If we
rename the variables in a term in such a way that the structure is preserved, is
is called α-renaming.

Here is an example of two terms that are not α-equivalent.

X ≡ (λa.λb.ab) andY ≡ (λw.λx.xw)

Notice how the second term Y applies its arguments in the reverse order
compared toX . The structure of the terms are different, so they are not
α-equivalent.

Question 4: Which of the following pairs are α-equivalent?

λa.λb.abb λb.λa.baa

λa.λb.abb λi.λj.jji

λx.xλy.x λe.eλf.f

λx.xλy.x λe.eλf.e

Sometimes it happens that a free variable or a variable that is bound to
one λ ends up being moved around the expression in such a way that it gets
“captured” by another λ. This is known as α-capture, and is almost always a
bad thing. Here are some examples.

(λx.λy.yx)y → λy.yy

The free variable y has been captured by the λy. Contrast this example,
where we have α-renamed the λy term to λz:

(λx.λz.zx)y → λz.zy

In general, if you are performing a reduction and find that you are going
to capture a free variable, you need to α-rename the capturing lambda. You
cannot rename the free variable!

You can see that the non-capturing version has a different structure than
the capturing version.

It is easy to write examples that cause capture when you use free variables,
but you can do it with only bound variables too, if you reduce to normal form.

(λf.λx.fx)(λy.λx.y) → λx.(λy.λx.y)x → λx.λx.x

We can prevent this by α-renaming the second term.

(λf.λx.fx)(λy.λz.y) → λx.(λy.λz.y)x → λx.λz.x

For this reason, it is best that you always use distinct variable names for
your lambdas.

6

Church Numerals

The λ-calculus doesn’t have numbers, but we can model them using func-
tions. We need to know what a number actually is in order to model it. For
our model, we will say that a number n can be thought of as a potential: some-
day we are going to do something n times. If we are going to do something, we
also need something to do it to.

Therefore, a numeral3 in λ calculus will be a function that takes two ar- 3 A number is the abstract concept
of quantity. A numeral is a textual
or other representation of a specific
number. When you see the character
5 you are looking at a numeral, but
you think of the number it represents.

guments, an action and a target, and performs the action a certain number of
times to the target. These are called Church Numerals, after Alonso Church.

f0 = λf x . x

f1 = λf x . (f x)

f2 = λf x . (f (f x))

f3 = λf x . (f (f (f x)))

When working with these inHaskell, it is nice to have a means of view-
ing them.

c0 f x = x
c1 f x = f x
c2 f x = f (f x)
show n = n (+ 1) 0

Prelude> show c2
2

Incrementing Church Numerals

To increment a Church Numeral, we need to take the church numeralm, the
intended action f , and the intended target x. Think for a moment how can we
cause f to be applied to x a total ofm+ 1 times?

We can causem applications by calling (m f x). We can apply f to the
result for a total ofm+ 1 calls.

inc m f x = f (m f x)

Adding Church Numerals

Similar reasoning can yield addition and multiplication. Try to work out
addition first before looking at the answer. You will take two church numerals,
m and n, as well as the action f and the target x.

cAdd m n f x = m f (n f x)

Multiplication is simply repeated addition. To do multiplication, consider
what the fuction (m f) represents. It itself is a function that will perform f a
total ofm times. We can repeat this function as well as we could repeat any
other. Try it.

7

cMul m n f x = m (n f) x

Subtraction is much more complex.

To Infinity and Beyond

Suppose we want to implement

f n = f (n+1)

The outline of the function would look like

λn.(f (inc n))

But, how does f get to know itself?
The only way is to tell f its own name by having it take it as a parameter.

λf.λn.(f (inc n))

Once f is written this way, we finish by passing a copy of f to itself.

(λf.λn.(f (inc n)))

λf.λn.(f (inc n))

But now f must pass itself into itself... so we have

(λf.λn.((f f) (inc n)))

λf.λn.((f f) (inc n))

You may find it useful to trace out the call f c2 to be sure you understand
what’s happening.

The Y -combinator

It kind of painful to have to double the size of each function to enable recur-
sion. Perhaps we can use another function to do that for us.

We’ll call this function Y . It will take another function f and return a re-
cursive version of it. Function f will still need to ask for itself as a parameter,
but Y can be responsible for duplicating it.

We want it to be a combinator, a function that produces its result only
through function application.

Therefore, Y should have the following property.

(Y f) → (f (Y f))

Using the doubling trick from above, we implement Y like this:

Y = λf.(λy.(f (y y)) λy.(f (y y)))

8

Tracing out (Y F), we get

(Y F) = (λf.(λy.(f (y y)) λy.(f (y y))) F)

= (λy.(F (y y)) λy.(F (y y)))

= (F (λy.(F (y y))λy.F (y y)))

= (F (Y F))

which is what we wanted.

Lambda Calculus in Real Programming Languages

You have λ expressions in “normal” programming languages too; they are
even being retrofitted onto languages that did not have them previously, such
as Java and C++. Here are some examples of where you will see them. Each
one will be the “increment” function anonymously applied to 10 to get 11.

Haskell (\x -> x + 1) 10

OCaml (fun x -> x + 1) 10

Common Lisp (funcall (lambda (x) (+ x 1)) 10)

Javascript (function(x){return x+1;})(10)

Clojure Variation 1

(#(+ 1 %) 10)

Clojure Variation 2

((fn [x] (+ 1 x)) 10)

Python (lambda x: x + 1) (10)

Ruby lambda { |x| x + 1}.call (10)

C++ 11 #include <iostream>

using namespace std;

int main() {
cout << [](int x){ return x + 1; }(10) << endl;

}

Java (x) -> { x + 1};

There are other things you have to do to actually call this in Java, though.

9

Exercises

Solutions to exercises

Solution 1

Valid λx.xyz

Not Valid λx.λy.

Valid a

Valid xλwy.y

Not Valid xλ

Not Valid λλxz.zx

Valid (abcd)(efgh)ijλklm.mkl

Solution 2

(λx.(λy.x)) The first λ.
(λx.(λx.x)) The second λ.
(λx.x(λy.x)) Both are bound to the first λ.
(λx.x(λx.x)) The first x is bound to the first λ, the second x is

bound to the second λ.
(λz.x(λy.x)) Both x’s are free.
(λz.x(λx.x)) The first x is free but the second is bound to the

second λ.

Solution 3

(λx.xx)y → yy

(λx.axxa)y → ayya

(λx.(λz.zx)q)y → (λz.zy)q → qy

(λx.x((λz.zx)(λx.bx)))y → y((λz.zy)(λx.bx)) → y((λx.bx)y) → y(by)

(λa.a)(λb.b)(λc.cc)(λd.d) → (λb.b)(λc.cc)(λd.d) → (λc.cc)(λd.d) → (λd.d)(λd.d) → (λd.d)

Solution 4

Yes λa.λb.abb λb.λa.baa

No λa.λb.abb λi.λj.jji

No λx.xλy.x λe.eλf.f

Yes λx.xλy.x λe.eλf.e

Colophon

This document was compiled using Lua LATEX and the tufte-book package.
The body text is set in the Equity font, and the headers are set in the Concourse
font. Both these fonts are available fromMatthew Butterick. The source code
is set in Computer Modern Teletype, designed by Donald Knuth.

	Introduction and Objectives
	Church Numerals
	To Infinity and Beyond
	Lambda Calculus in Real Programming Languages
	Exercises
	Solutions to exercises
	Colophon

