## CS 421 - LL Grammar Problems

Question 1: What advantage does it give the programmer if a grammar turns out to be LL?
Question 2: What are the two conditions that will cause a grammar to not be LL?
Question 3: Consider the following grammar.

$$
S \rightarrow \quad x E a
$$

$$
\mid y E z
$$

$$
E \rightarrow \quad x F
$$

$$
\mid x E q
$$

$$
F \rightarrow q
$$

$$
\mid F z
$$

This grammar is not LL. There are two reasons for that. What are they?
Question 4: Convert the following grammar into an equivalent LL grammar.

$$
\begin{aligned}
S \rightarrow & x E a \\
& \mid y E z \\
E \rightarrow & x F \\
& \mid x E q \\
F \rightarrow & q \\
& \mid F z
\end{aligned}
$$

Question 5: Convert the following nonLL grammar into an equivalent LL grammar.

$$
\left.\begin{array}{rl}
S \rightarrow & S x \\
& \left\lvert\, \begin{array}{ll} 
& a
\end{array}\right. \\
E \rightarrow & y
\end{array}\right)
$$

Question 6: Convert the following nonLL grammar into an equivalent LL grammar.

$$
\begin{aligned}
S \rightarrow & y y \\
& \mid y E \\
E \rightarrow & E x \\
& x a
\end{aligned}
$$

Question 7: Convert the following nonLL grammar into an equivalent LL grammar.

$$
\begin{aligned}
S \rightarrow & S x \\
\mid & a E \\
E \rightarrow & x y \\
\mid & x z
\end{aligned}
$$

Question 8: Convert the following nonLL grammar into an equivalent LL grammar.

$$
\begin{aligned}
S \rightarrow & S x \\
\mid & x E \\
E \rightarrow & y y \\
\mid & y z
\end{aligned}
$$

Question 9: Convert the following nonLL grammar into an equivalent LL grammar.

$$
\begin{aligned}
S \rightarrow & y E \\
\mid & y z \\
E \rightarrow & E z z \\
\mid & x a l
\end{aligned}
$$

Question 10: Convert the following nonLL grammar into an equivalent LL grammar.

$$
\begin{aligned}
S \rightarrow & S x \\
\mid & a E \\
E \rightarrow & z b l \\
\mid & z
\end{aligned}
$$

## 1 Solutions to exercises

Solution 1 If the grammar is LL, then we can write a parser for it very simply using recursive descent.

## Solution 2

1. two rules for the same symbol that have overlapping first sets (The "common prefix" problem.)
2. a left recursive rule

Solution 3 The $E$ productions share a common prefix, $x$; and one of the $F$ rules is left recursive.

$$
\begin{aligned}
& S \rightarrow x E a \\
& \mid y E z \\
& E \rightarrow x E E^{\prime} \\
& \text { Solution 4 } \\
& E^{\prime} \rightarrow F \\
& \mid E q \\
& F \rightarrow q F^{\prime} \\
& F^{\prime} \rightarrow z F^{\prime} \\
& \mid \epsilon
\end{aligned}
$$

## Solution 5

$$
\begin{aligned}
S & \rightarrow a E S^{\prime} \\
S^{\prime} & \rightarrow x S^{\prime} \\
& \mid \epsilon \\
E & \rightarrow y a E^{\prime} \\
E^{\prime} & \rightarrow y \\
& \mid z
\end{aligned}
$$

## Solution 6

$$
\begin{aligned}
S & \rightarrow y S^{\prime} \\
S^{\prime} & \rightarrow y \\
& \mid E \\
E & \rightarrow x a E^{\prime} \\
E^{\prime} & \rightarrow x E^{\prime} \\
& \mid \epsilon
\end{aligned}
$$

## Solution 7

$$
\begin{aligned}
S & \rightarrow a E S^{\prime} \\
S^{\prime} & \rightarrow x S^{\prime} \\
& \mid \epsilon \\
E & \rightarrow x E^{\prime} \\
E^{\prime} & \rightarrow y \\
& \mid z
\end{aligned}
$$

## Solution 8

$$
\begin{aligned}
S & \rightarrow x E S^{\prime} \\
S^{\prime} & \rightarrow x S^{\prime} \\
& \mid \epsilon \\
E & \rightarrow y E^{\prime} \\
E^{\prime} & \rightarrow y \\
& \mid z
\end{aligned}
$$

## Solution 9

$$
\begin{aligned}
S & \rightarrow y S^{\prime} \\
S^{\prime} & \rightarrow z \\
& \mid E \\
E & \rightarrow x a a E^{\prime} \\
E^{\prime} & \rightarrow z z E^{\prime} \\
& \mid \epsilon
\end{aligned}
$$

## Solution 10

$$
\begin{aligned}
S & \rightarrow a E S^{\prime} \\
S^{\prime} & \rightarrow x S^{\prime} \\
& \mid \epsilon \\
E & \rightarrow z b E^{\prime} \\
E^{\prime} & \rightarrow b \\
& \mid z
\end{aligned}
$$

