
Objectives Function Calls Example Recursions Lists References

Basic Recursion

Dr. Mattox Beckman

University of Illinois at Urbana-Champaign

Department of Computer Science

Objectives Function Calls Example Recursions Lists References

Objectives

I Diagram the stack frames that result from a series of function calls.

I UseHaskell to write a recursive function on integers.

I UseHaskell to write a recursive function on lists.

Objectives Function Calls Example Recursions Lists References

Function Calls

I Remember the syntax of a function definition inHaskell.

Function Syntax

1 foo a =
2 let aa = a * a
3 in aa + a

I The above function has one paramater and one local.

I If we call it three times, what will happen in memory?

1 x = (foo 1) + (foo 2) + (foo 3)

Objectives Function Calls Example Recursions Lists References

Function Calls

I Remember the syntax of a function definition inHaskell.

Function Syntax

1 foo a =
2 let aa = a * a
3 in aa + a

I The above function has one paramater and one local.

I If we call it three times, what will happen in memory?

1 x = (foo 1) + (foo 2) + (foo 3)

First Call Second Call Third Call

a 1

aa 1



Objectives Function Calls Example Recursions Lists References

Function Calls

I Remember the syntax of a function definition inHaskell.

Function Syntax

1 foo a =
2 let aa = a * a
3 in aa + a

I The above function has one paramater and one local.

I If we call it three times, what will happen in memory?

1 x = (foo 1) + (foo 2) + (foo 3)

First Call Second Call Third Call

a 1

aa 1

a 2

aa 4

Objectives Function Calls Example Recursions Lists References

Function Calls

I Remember the syntax of a function definition inHaskell.

Function Syntax

1 foo a =
2 let aa = a * a
3 in aa + a

I The above function has one paramater and one local.

I If we call it three times, what will happen in memory?

1 x = (foo 1) + (foo 2) + (foo 3)

First Call Second Call Third Call

a 1

aa 1

a 2

aa 4

a 3

aa 9

Objectives Function Calls Example Recursions Lists References

Functions Calling Functions

I If one function calls another, both activation records exist simultaneously.

1 foo x = x + bar (x+1)
2 bar y = y + baz (y+1)
3 baz z = z * 10

I What happens when we call foo 1?

Objectives Function Calls Example Recursions Lists References

Functions Calling Functions

I If one function calls another, both activation records exist simultaneously.

1 foo x = x + bar (x+1)
2 bar y = y + baz (y+1)
3 baz z = z * 10

I What happens when we call foo 1?

x 1

ret



Objectives Function Calls Example Recursions Lists References

Functions Calling Functions

I If one function calls another, both activation records exist simultaneously.

1 foo x = x + bar (x+1)
2 bar y = y + baz (y+1)
3 baz z = z * 10

I What happens when we call foo 1?

x 1

ret

y 2

ret

Objectives Function Calls Example Recursions Lists References

Functions Calling Functions

I If one function calls another, both activation records exist simultaneously.

1 foo x = x + bar (x+1)
2 bar y = y + baz (y+1)
3 baz z = z * 10

I What happens when we call foo 1?

x 1

ret

y 2

ret

z 3

ret

Objectives Function Calls Example Recursions Lists References

Functions Calling Functions

I If one function calls another, both activation records exist simultaneously.

1 foo x = x + bar (x+1)
2 bar y = y + baz (y+1)
3 baz z = z * 10

I What happens when we call foo 1?

x 1

ret

y 2

ret

z 3

ret 30

Objectives Function Calls Example Recursions Lists References

Functions Calling Functions

I If one function calls another, both activation records exist simultaneously.

1 foo x = x + bar (x+1)
2 bar y = y + baz (y+1)
3 baz z = z * 10

I What happens when we call foo 1?

x 1

ret

y 2

30

ret

z 3

ret 30



Objectives Function Calls Example Recursions Lists References

Functions Calling Functions

I If one function calls another, both activation records exist simultaneously.

1 foo x = x + bar (x+1)
2 bar y = y + baz (y+1)
3 baz z = z * 10

I What happens when we call foo 1?

x 1

ret

y 2

30

ret 32

z 3

ret 30

Objectives Function Calls Example Recursions Lists References

Functions Calling Functions

I If one function calls another, both activation records exist simultaneously.

1 foo x = x + bar (x+1)
2 bar y = y + baz (y+1)
3 baz z = z * 10

I What happens when we call foo 1?

x 1

32

ret

y 2

30

ret 32

z 3

ret 30

Objectives Function Calls Example Recursions Lists References

Functions Calling Functions

I If one function calls another, both activation records exist simultaneously.

1 foo x = x + bar (x+1)
2 bar y = y + baz (y+1)
3 baz z = z * 10

I What happens when we call foo 1?

x 1

32

ret 33

y 2

30

ret 32

z 3

ret 30

Objectives Function Calls Example Recursions Lists References

Factorial

I This works if the function calls itself.

Factorial

1 fact 0 = 1
2 fact 1 = 1
3 fact n = n * fact (n-1)

I fact 4 ...

n 4

6

ret 24

n 3

2

ret 6

n 2

1

ret 2

n 1

ret 1



Objectives Function Calls Example Recursions Lists References

Lists inHaskell

I Haskell has a built-in syntax for singly linked lists.

I The empty list is [].
I You can use : to create a new list …

1 : 2 : 3 : 4 : []

1 2 3 4

I You can also write [1,2,3,4].

Objectives Function Calls Example Recursions Lists References

Lists

Because lists are recursive, functions that deal with lists tend to be recursive.

Length

1 mylength :: [a] -> Int
2 mylength [] = 0
3 mylength (x:xs) = 1 + mylength xs
4

5 mylength s -- would return 3

I The base case stops the computation.

I Your recursive case calls itself with a smaller argument than the original call.

Objectives Function Calls Example Recursions Lists References

Activity

I Write a function fib that computes the nth Fibonacci number Fn. Let F1 = 1 and F2 = 1.

I Write a function sumList that takes a list and sums its elements.

I Write a function incList that takes a list and increments its elements.

Objectives Function Calls Example Recursions Lists References

Solutions to fib and sumList

1 fib 1 = 1
2 fib 2 = 1
3 fib n = fib (n-1) + fib (n-2)
4

5 sumList [] = 0
6 sumList (x:xs) = x + sumList xs



Objectives Function Calls Example Recursions Lists References

Solution to incList

I Remember that you must create a new list!

1 incList [] = []
2 incList (x:xs) = x+1 : incList xs

Objectives Function Calls Example Recursions Lists References

History

I The first programming language to implement recursion was Lisp in 1958. [McC79]

References

[McC79] John McCarthy. History of Lisp. Stanford University, 1979. URL:

http://www-formal.stanford.edu/jmc/history/lisp/lisp.html.


