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Objectives

I Identify expressions that have subexpressions in tail position.

I Explain the tail call optimization.

I Convert a direct style recursive function into an equivalent tail recursive function.

Objectives Accumulating Recursion Activity References

Tail Calls

Tail Position A subexpression s of expressions e, if it is evaluated, will be taken as the value of

e. Consider this code:

I if x > 3 then x + 2 else x - 4
I f (x * 3) – no (proper) tail position here

Tail Call A function call that occurs in tail position

I if h x then h x else x + g x
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Your Turn

Find the tail calls!

Example Code

1 fact1 0 = 1
2 fact1 n = n * fact1 (n-1)
3

4 fact2 n = aux n 1
5 where aux 0 a = a
6 aux n a = aux (n-1) (a*n)
7

8 fib 0 = 0
9 fib 1 = 1

10 fib n = fib (n-1) + fib (n-2)
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Tail Call Example

I If one function calls another in tail position, we get a special behavior.

Example

1 foo x = bar (x+1)
2 bar y = baz (y+1)
3 baz z = z * 10

I What happens when we call foo 1?
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The Tail Call Optimization

Example

1 foo x = bar (x+1)
2 bar y = baz (y+1)
3 baz z = z * 10

I If that’s the case, we can cut out the middle man …
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The Tail Call Optimization

Example

1 foo x = bar (x+1)
2 bar y = baz (y+1)
3 baz z = z * 10

I If that’s the case, we can cut out the middle man …

I Actually, we can do even better than that.



Objectives Accumulating Recursion Activity References

The Optimization

I When a function is in tail position, the compiler will recycle the activation record!

Example

1 foo x = bar (x+1)
2 bar y = baz (y+1)
3 baz z = z * 10
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The Optimization

I When a function is in tail position, the compiler will recycle the activation record!

Example

1 foo x = bar (x+1)
2 bar y = baz (y+1)
3 baz z = z * 10

z 3

ret 30

I This allows recursive functions to be written as loops internally.
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Direct-Style Recursion

I In recursion, you split the input into the “first piece” and the “rest of the input.”

I In direct-style recursion: the recursive call computes the result for the rest of the input,

and then the function combines the result with the first piece.

I In other words, you wait until the recursive call is done to generate your result.

Direct Style Summation

1 sum [] = 0
2 sum (x:xs) = x + sum xs
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Accumulating Recursion

I In accumulating recursion: generate an intermediate result now, and give that to the

recursive call.

I Usually this requires an auxiliary function.

Tail Recursive Summation

1 sum xx = aux xx 0
2 where aux [] a = a
3 aux (x:xs) a = aux xs (a+x)
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Convert These Functions!

I Here are three functions. Try converting them to tail recursion.

1 fun1 [] = 0
2 fun1 (x:xs) | even x = fun1 xs - 1
3 | odd x = fun1 xs + 1
4

5 fun2 1 = 0
6 fun2 n = 1 + fun2 (n `div` 2)
7

8 fun3 1 = 1
9 fun3 2 = 1

10 fun3 n = fun3 (n-1) + fun3 (n-2)
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Solution for fun1 and fun2

I Usually it’s best to create a local auxiliary function.

1 fun1 xx = aux xx 0
2 where aux [] a = a
3 aux (x:xs) | even x = aux xs (a-1)
4 | odd x = aux xs (a+1)
5

6 fun2 n = aux n 1
7 where aux 1 a = a
8 aux n a = aux (n `div` 2) (a+1)
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Solution for fun3

I Because the recursion calls itself twice, we need two accumulators.

1 fun3 n = aux n 1 1
2 where aux 0 f1 f2 = f1
3 aux n f1 f2 = aux (n-1) f2 (f1+f2)
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