
Objectives Accumulating Recursion Activity References

Tail Recursion

Dr. Mattox Beckman

University of Illinois at Urbana-Champaign

Department of Computer Science

Objectives Accumulating Recursion Activity References

Objectives

I Identify expressions that have subexpressions in tail position.

I Explain the tail call optimization.

I Convert a direct style recursive function into an equivalent tail recursive function.

Objectives Accumulating Recursion Activity References

Tail Calls

Tail Position A subexpression s of expressions e, if it is evaluated, will be taken as the value of

e. Consider this code:

I if x > 3 then x + 2 else x - 4
I f (x * 3) – no (proper) tail position here

Tail Call A function call that occurs in tail position

I if h x then h x else x + g x

Objectives Accumulating Recursion Activity References

Your Turn

Find the tail calls!

Example Code

1 fact1 0 = 1
2 fact1 n = n * fact1 (n-1)
3

4 fact2 n = aux n 1
5 where aux 0 a = a
6 aux n a = aux (n-1) (a*n)
7

8 fib 0 = 0
9 fib 1 = 1

10 fib n = fib (n-1) + fib (n-2)



Objectives Accumulating Recursion Activity References

Tail Call Example

I If one function calls another in tail position, we get a special behavior.

Example

1 foo x = bar (x+1)
2 bar y = baz (y+1)
3 baz z = z * 10

I What happens when we call foo 1?

Objectives Accumulating Recursion Activity References

Tail Call Example

I If one function calls another in tail position, we get a special behavior.

Example

1 foo x = bar (x+1)
2 bar y = baz (y+1)
3 baz z = z * 10

I What happens when we call foo 1?

x 1

ret

Objectives Accumulating Recursion Activity References

Tail Call Example

I If one function calls another in tail position, we get a special behavior.

Example

1 foo x = bar (x+1)
2 bar y = baz (y+1)
3 baz z = z * 10

I What happens when we call foo 1?

x 1

ret

y 2

ret

Objectives Accumulating Recursion Activity References

Tail Call Example

I If one function calls another in tail position, we get a special behavior.

Example

1 foo x = bar (x+1)
2 bar y = baz (y+1)
3 baz z = z * 10

I What happens when we call foo 1?

x 1

ret

y 2

ret

z 3

ret



Objectives Accumulating Recursion Activity References

Tail Call Example

I If one function calls another in tail position, we get a special behavior.

Example

1 foo x = bar (x+1)
2 bar y = baz (y+1)
3 baz z = z * 10

I What happens when we call foo 1?

x 1

ret

y 2

ret

z 3

ret 30

Objectives Accumulating Recursion Activity References

Tail Call Example

I If one function calls another in tail position, we get a special behavior.

Example

1 foo x = bar (x+1)
2 bar y = baz (y+1)
3 baz z = z * 10

I What happens when we call foo 1?

x 1

ret

y 2

30

ret

z 3

ret 30

Objectives Accumulating Recursion Activity References

Tail Call Example

I If one function calls another in tail position, we get a special behavior.

Example

1 foo x = bar (x+1)
2 bar y = baz (y+1)
3 baz z = z * 10

I What happens when we call foo 1?

x 1

ret

y 2

30

ret 30

z 3

ret 30

Objectives Accumulating Recursion Activity References

Tail Call Example

I If one function calls another in tail position, we get a special behavior.

Example

1 foo x = bar (x+1)
2 bar y = baz (y+1)
3 baz z = z * 10

I What happens when we call foo 1?

x 1

30

ret

y 2

30

ret 30

z 3

ret 30



Objectives Accumulating Recursion Activity References

Tail Call Example

I If one function calls another in tail position, we get a special behavior.

Example

1 foo x = bar (x+1)
2 bar y = baz (y+1)
3 baz z = z * 10

I What happens when we call foo 1?

x 1

30

ret 30

y 2

30

ret 30

z 3

ret 30

Objectives Accumulating Recursion Activity References

The Tail Call Optimization

Example

1 foo x = bar (x+1)
2 bar y = baz (y+1)
3 baz z = z * 10

I If that’s the case, we can cut out the middle man …

Objectives Accumulating Recursion Activity References

The Tail Call Optimization

Example

1 foo x = bar (x+1)
2 bar y = baz (y+1)
3 baz z = z * 10

I If that’s the case, we can cut out the middle man …

x 1

ret

Objectives Accumulating Recursion Activity References

The Tail Call Optimization

Example

1 foo x = bar (x+1)
2 bar y = baz (y+1)
3 baz z = z * 10

I If that’s the case, we can cut out the middle man …

x 1

ret

y 2

ret



Objectives Accumulating Recursion Activity References

The Tail Call Optimization

Example

1 foo x = bar (x+1)
2 bar y = baz (y+1)
3 baz z = z * 10

I If that’s the case, we can cut out the middle man …

x 1

ret

y 2

ret

z 3

ret

Objectives Accumulating Recursion Activity References

The Tail Call Optimization

Example

1 foo x = bar (x+1)
2 bar y = baz (y+1)
3 baz z = z * 10

I If that’s the case, we can cut out the middle man …

x 1

ret

y 2

ret

z 3

ret 30

Objectives Accumulating Recursion Activity References

The Tail Call Optimization

Example

1 foo x = bar (x+1)
2 bar y = baz (y+1)
3 baz z = z * 10

I If that’s the case, we can cut out the middle man …

x 1

30

ret 30

y 2

ret

z 3

ret 30

Objectives Accumulating Recursion Activity References

The Tail Call Optimization

Example

1 foo x = bar (x+1)
2 bar y = baz (y+1)
3 baz z = z * 10

I If that’s the case, we can cut out the middle man …

I Actually, we can do even better than that.



Objectives Accumulating Recursion Activity References

The Optimization

I When a function is in tail position, the compiler will recycle the activation record!

Example

1 foo x = bar (x+1)
2 bar y = baz (y+1)
3 baz z = z * 10

Objectives Accumulating Recursion Activity References

The Optimization

I When a function is in tail position, the compiler will recycle the activation record!

Example

1 foo x = bar (x+1)
2 bar y = baz (y+1)
3 baz z = z * 10

x 1

ret

Objectives Accumulating Recursion Activity References

The Optimization

I When a function is in tail position, the compiler will recycle the activation record!

Example

1 foo x = bar (x+1)
2 bar y = baz (y+1)
3 baz z = z * 10

y 2

ret

Objectives Accumulating Recursion Activity References

The Optimization

I When a function is in tail position, the compiler will recycle the activation record!

Example

1 foo x = bar (x+1)
2 bar y = baz (y+1)
3 baz z = z * 10

z 3

ret



Objectives Accumulating Recursion Activity References

The Optimization

I When a function is in tail position, the compiler will recycle the activation record!

Example

1 foo x = bar (x+1)
2 bar y = baz (y+1)
3 baz z = z * 10

z 3

ret 30

Objectives Accumulating Recursion Activity References

The Optimization

I When a function is in tail position, the compiler will recycle the activation record!

Example

1 foo x = bar (x+1)
2 bar y = baz (y+1)
3 baz z = z * 10

z 3

ret 30

I This allows recursive functions to be written as loops internally.

Objectives Accumulating Recursion Activity References

Direct-Style Recursion

I In recursion, you split the input into the “first piece” and the “rest of the input.”

I In direct-style recursion: the recursive call computes the result for the rest of the input,

and then the function combines the result with the first piece.

I In other words, you wait until the recursive call is done to generate your result.

Direct Style Summation

1 sum [] = 0
2 sum (x:xs) = x + sum xs

Objectives Accumulating Recursion Activity References

Accumulating Recursion

I In accumulating recursion: generate an intermediate result now, and give that to the

recursive call.

I Usually this requires an auxiliary function.

Tail Recursive Summation

1 sum xx = aux xx 0
2 where aux [] a = a
3 aux (x:xs) a = aux xs (a+x)



Objectives Accumulating Recursion Activity References

Convert These Functions!

I Here are three functions. Try converting them to tail recursion.

1 fun1 [] = 0
2 fun1 (x:xs) | even x = fun1 xs - 1
3 | odd x = fun1 xs + 1
4

5 fun2 1 = 0
6 fun2 n = 1 + fun2 (n `div` 2)
7

8 fun3 1 = 1
9 fun3 2 = 1

10 fun3 n = fun3 (n-1) + fun3 (n-2)

Objectives Accumulating Recursion Activity References

Solution for fun1 and fun2

I Usually it’s best to create a local auxiliary function.

1 fun1 xx = aux xx 0
2 where aux [] a = a
3 aux (x:xs) | even x = aux xs (a-1)
4 | odd x = aux xs (a+1)
5

6 fun2 n = aux n 1
7 where aux 1 a = a
8 aux n a = aux (n `div` 2) (a+1)

Objectives Accumulating Recursion Activity References

Solution for fun3

I Because the recursion calls itself twice, we need two accumulators.

1 fun3 n = aux n 1 1
2 where aux 0 f1 f2 = f1
3 aux n f1 f2 = aux (n-1) f2 (f1+f2)

Objectives Accumulating Recursion Activity References

References

[DG05] Olivier Danvy and Mayer Goldberg. “There and Back Again”. In: Fundamenta

Informaticae 66.4 (Jan. 2005), pp. 397–413. ISSN: 0169-2968. URL:

http://dl.acm.org/citation.cfm?id=1227189.1227194.

[Ste77] Guy Lewis Steele Jr. “Debunking the ”Expensive Procedure Call” Myth or,

Procedure Call Implementations Considered Harmful or, LAMBDA: The Ultimate

GOTO”. In: Proceedings of the 1977 Annual Conference. ACM ’77. Seattle,

Washington: ACM, 1977, pp. 153–162. URL:

http://doi.acm.org/10.1145/800179.810196.


