
First Class Anonymous Functions

Introduction to Higher Order Functions

Dr. Mattox Beckman

University of Illinois at Urbana-Champaign

Department of Computer Science



First Class Anonymous Functions

Objectives

I Explain the concept of first class citizen.

I Use sectioning and lambda to define anonymous functions.

I Change the behavior and interface of a function by using another function.



First Class Anonymous Functions

First Class Functions

An entity is said to be first class when it can be:

I Assigned to a variable, passed as a parameter, or returned as a result

Examples:

I APL: scalars, vectors, arrays

I C: scalars, pointers, structures

I C++: like C, but with objects

I Haskell, Lisp,OCaml: scalars, lists, tuples, functions

The Kind of Data a Program Manipulates Changes the Expressive Ability of a Program.



First Class Anonymous Functions

Defining Functions the Usual Way

SomeHaskell Functions

1 sqr a = a * a
2 hypotsq a b = sqr a + sqr b

Sample Run

1 sqr :: Integer -> Integer
2 sqr :: Num a => a -> a
3 hypotsq :: Num a => a -> a -> a
4 Prelude> sqr 10
5 100
6 Prelude> hypotsq 3 4
7 25



First Class Anonymous Functions

Example: Compose

Example

1 inc x = x + 1
2 double x = x * 2
3 compose f g x = f (g x)

I Notice the function types.

1 compose :: (t1 -> t2) -> (t -> t1) -> t -> t2
2 Prelude> :t double
3 double :: Integer -> Integer
4 Prelude> double 10
5 20
6 Prelude> compose inc double 10
7 21

f g



First Class Anonymous Functions

Example: Twice

I One handy function allows us to do something twice.

I You will see this function again!

Twice

1 twice f x = f (f x)

Here is a sample run …

Prelude> :t twice
twice :: (t -> t) -> t -> t
Prelude> twice inc 5
7
Prelude> twice twice inc 4



First Class Anonymous Functions

Creating Functions: Lambda Form

I Functions do not have to have names.

1 \x -> x + 1

I The parts:

I Backslash (a.k.a. lambda)
I Parameter list
I Arrow
I Body of function

1 prelude> (\x -> x + 1) 41
2 42



First Class Anonymous Functions

Creating Functions: Partial Application

Standard Form vs. Anonymous Form

1 inc :: (Num t) => t -> t
2 inc a = a + 1
3 inc = \a -> a + 1
4

5 plus :: (Num t) => t -> t -> t
6 plus a b = a + b
7 plus = \a -> \b -> a + b

I What do you think we would get if we called plus 1 ?



First Class Anonymous Functions

Creating Functions: Partial Application

Standard Form vs. Anonymous Form

1 inc :: (Num t) => t -> t
2 inc a = a + 1
3 inc = \a -> a + 1
4

5 plus :: (Num t) => t -> t -> t
6 plus a b = a + b
7 plus = \a -> \b -> a + b

I What do you think we would get if we called plus 1 ?

1 inc = plus 1



First Class Anonymous Functions

η-equivalence

An Equivalence

f ≡ \x -> f x

I Proof, assuming f is a function…

f z ≡ (\x -> f x) z

These are Equivalent

1 plus a b = (+) a b
2 plus a = (+) a
3 plus = (+)

So are These

1 inc x = x + 1
2 inc = (+) 1
3 inc = (+1)



First Class Anonymous Functions

Curry and Uncurry

I Suppose you have a function tplus that takes a pair of integers and adds them.

1 tplus :: (Integer,Integer) -> Integer
2 tplus (a,b) = a + b

I But you really wish it took its arguments one at a time.

I There’s a function curry :: (a,b) -> c -> a -> b -> c that will convert it for

you! See if you can write it.


	First Class
	Introduction

	Anonymous Functions

