
Introduction Mapping Folding functions

Mapping and Folding

Dr. Mattox Beckman

University of Illinois at Urbana-Champaign

Department of Computer Science



Introduction Mapping Folding functions

Objectives

I Define the foldr and map functions.

I Use foldr and map to implement two common recursion patterns.



Introduction Mapping Folding functions

Let’s Talk about Mapping

Incrementing Elements of a List

1 incL [] = []
2 incL (x:xs) = x+1 : incL xs

incL [7,5,6,4,2,-1,8] ⇒ [8,6,7,5,3,0,9]



Introduction Mapping Folding functions

Mapping Functions the Hard Way

What do the following definitions have in common?

Example 1

1 incL [] = []
2 incL (x:xs) = x+1 : incL xs

Example 2

1 doubleL [] = []
2 doubleL (x:xs) = x*2 : doubleL xs



Introduction Mapping Folding functions

Mapping functions the hard way

Example 1

1 incL [] = [] ← Base Case
2 incL (x:xs) = x+1 : incL xs

Example 2

1 doubleL [] = [] ← Base Case
2 doubleL (x:xs) = x*2 : doubleL xs

Recursion Recursion

I Only two things are different:

I The operations we perform
I The names of the functions



Introduction Mapping Folding functions

Mattox’s Law of Computing

The computer exists to work for us; not us for the computer. If you are doing something

repetitive for the computer, you are doing something wrong.

Stop what you’re doing and find out how to do it right.



Introduction Mapping Folding functions

Mapping Functions the Easy Way

Map Definition

map f [x0, x1, . . . , xn] = [f x0, f x1, . . . , f xn]

1 map :: (a->b) -> [a] -> [b]
2 map f [] = []
3 map f (x:xs) = f x : map f xs
4

5 incL = map inc
6

7 doubleL = map double

I inc and double have been transformed into recursive functions.

I I dare you to try this in Java.



Introduction Mapping Folding functions

Let’s Talk about Folding

What do the following definitions have in common?

Example 1

1 sumL [] = 0
2 sumL (x:xs) = x + sumL xs

Example 2

1 prodL [] = 1
2 prodL (x:xs) = x * prodL xs



Introduction Mapping Folding functions

foldr

Fold Right Definition

foldr f z [x0, x1, . . . , xn] = f x0 (f x1 · · · (f xn z) · · · )

I To use foldr, we specify the function and the base case.

1 foldr :: (a -> b -> b) -> b -> [a] -> b
2 foldr f z [] = z
3 foldr f z (x:xs) = f x (foldr f z xs)
4

5 sumlist = foldr (+) 0
6 prodlist = foldr (*) 1



Introduction Mapping Folding functions

Encoding Recursion using fold
I Notice the pattern between the recursive version and the higher order function version.

Recursive Style

1 plus a b = a + b
2 sum [] = 0
3 sum (x:xs) = plus x (sum xs)

Next Element Recursive Result Base Case

1 sum = foldr (\a b -> plus a b) 0



Introduction Mapping Folding functions

Some Things to Think About …

I These functions scale to clusters of computers.

I You can write map using foldr. Try it!
I You cannot write foldr using map —why not?



Introduction Mapping Folding functions

Other Higher Order Functions

I There are many other useful higher order functions!

I Investigate these:

all, any, zipWith, takeWhile, dropWhile, flip
I Remember you can use :t in the REPL to reveal the type of an expression.


	Introduction
	Introduction

	Mapping
	Mapping Pattern

	Folding functions
	Folding functions


