
Introduction Tuples Records Details You Try

Product Types

Dr. Mattox Beckman

University of Illinois at Urbana-Champaign

Department of Computer Science

Introduction Tuples Records Details You Try

Algebraic Datatypes

I We want to be able to build new types by combining existing types.

I Two ways to do it:

I Product types: tuples and records
I Sum types: disjoint types

a.k.a. tagged unions, disjoint unions, etc.

Introduction Tuples Records Details You Try

Objectives!

Objectives:

I Explain what a product type is.

I Use pairs and records to model various structures: dictionaries, databases, and complex

numbers.

Introduction Tuples Records Details You Try

Tuples

I An n-tuple is an ordered collection of n elements.

I If n = 2 we usually call it a pair.

1 Prelude> x = 10 :: Integer
2 Prelude> y = "Hi"
3 Prelude> :t x
4 x :: Integer
5 Prelude> :t y
6 y :: [Char] -- [Char] is a synonym for String
7 Prelude> p = (x,y)
8 Prelude> :t p
9 p :: (Integer, [Char])

Introduction Tuples Records Details You Try

Projection Functions

I We have projection functions:

1 Prelude> :t fst
2 fst :: (a, b) -> a
3 Prelude> :t snd
4 snd :: (a, b) -> b
5 Prelude> fst p
6 10
7 Prelude> snd p
8 "hi"

Introduction Tuples Records Details You Try

n-tuples

I We have n-tuples:

1 Prelude> let p4 = (10,"hi",\x -> x + 1, (2,3))
2 Prelude> :t p4
3 p4
4 :: (Num t, Num a, Num t1, Num t2) =>
5 (t, [Char], a -> a, (t1, t2))

Introduction Tuples Records Details You Try

Example

I Complex numbers have the form a+ bi, where i ≡
√
−1.

I Addition: (a+ bi) + (c+ di) = (a+ c) + (b+ d)i

I Multiplication: (a+ bi)× (c+ di) = ac− bd+ (ad+ bc)i

1 cadd (a,b) (c,d) = (a + c, b + d)
2 cmul (a,b) (c,d) = (a * c - b * d,
3 a * d + b * c)

We could use tuples to represent complex numbers, like this. (Hint: What are the types of

these functions?) Why might this be a bad idea?

1 Prelude> :t cadd
2 cadd :: (Num t, Num t1) => (t, t1) -> (t, t1) -> (t, t1)

Introduction Tuples Records Details You Try

Record Type Definitions

Record Syntax

data Name = Name { field :: type [, field :: type…] }

1 data Complex = Complex { re :: Float, im :: Float }
2 deriving (Show,Eq)

I To create an element of type Complex, you have two choices.
1. Treat the constructor as a function:

1 c = Complex 10.54 34.2

2. Specify the field names:

1 c = Complex { re = 10.54, im = 34.2 }

Each of the field names becomes a function in Haskell. By default, field names must be unique,

but Haskell 8.X lets you override this.

Introduction Tuples Records Details You Try

Haskell creates the field selector functions automatically.

1 Main> re c
2 10.54
3 Main> im c
4 34.2

Here are our complex number functions:

1 cadd x y = Complex { re = re x + re y
2 , im = im x + im y }
3 cmul x y = Complex { re = re x * re y - im x * im y
4 , im = re x * im y + re y * im x }

Introduction Tuples Records Details You Try

Example: Database Records

I Records are often used to model database-like data.

I Example: we want to store first name, last name, and age.

1 data Person = Person { fname :: String
2 , lname :: String
3 , age :: Int }
4 deriving (Show,Eq)
5

6 people = [Person "Bilbo" "Baggins" 111,
7 Person "Harry" "Potter" 19]

I The deriving (Show,Eq) allows us to be able to print and test for equality.

Introduction Tuples Records Details You Try

Some Things to Try

I An associative list is a representation of a dictionary that uses a list of key-value pairs.

They were commonly used in functional languages. Example:

[("emergency",911),("jenni",8675309)]
I Write a function add that takes a key, a corresponding value, and an associative list, and

returns a new one with the items inserted. For extra fun, have it keep the keys in a sorted

order.

I Write a function mylookup that takes a key and an associative list and returns the

corresponding value. This function will not behave well if the key is not in the list!

I Instead of tuples, try defining a record type with Key and Value fields, and use that

instead.

