Introduction
0000

Details Introduction
00000000 @000

Details
00000000

Introduction
0®00

Sum Types

Dr. Mattox Beckman

UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN
DEPARTMENT OF COMPUTER SCIENCE

Objectives

Details Introduction
00000000 00®0

v vV v v

Describe the syntax for declaring disjoint data types in HASKELL.
Show how to use disjoint types to represent lists, expressions, and exceptions.

Explain the operation and implementation of the list, Maybe and Either data types.

Use a disjoint datatype to represent an arithmetic calculation.

Details
00000000

Simple Type Definitions

Disjoint Type Syntax

data TName = CName [type - - -1 [| CName [type ---]---]

A sum type has three components: a name, a set of constructors, and possible arguments.

1data Contest

2data Velocity

3
sdata List a
5
sdata Tree a

7

Rock | Scissors | Paper
= MetersPerSecond Float
| FeetPerSecond Float
Cons a (List a)

Nil
Node a (Tree a) (Tree a)
Empty

Example of Contest and Velocity

1winner Rock Scissors = "Player 1"
2winner Scissors Paper = "Player 1"
3winner Paper Rock = "Player 1"
swinner Scissors Rock = "Player 2"
swinner Paper Scissors = "Player 2"
swinner Rock Paper = "Player 2"
7winner _ = "Tie"

8

sthrust (FeetPerSecond x) = x / 3.28
iwthrust (MetersPerSecond x) = x

Introduction Details Introduction Details
000e 00000000 0000 ©0000000
: :

The Most Fun Datatypes Are Recursive Type Constructors and Memory

Our Own List Construct » When a"r}/pe co'ns’rruc’ror is invoked, it causes memory fo be allocated.

» Writing an integer

1data List = Cons Int List » Writing [] or Nil

2 | Nil » Using: or Cons

3 deriving Show » Writing down a variable does not cause memory to be allocated.

sinsertSorted a Nil = Comns a Nil 1x =4 -- allocates 4

sinsertSorted a (Cons b bs) on =[] -- allocates empty list

6 | a<b = Cons a (Cons b bs) 3n2 = n -- does NOT allocate memory

7 | otherwise = Cons b (insertSorted a bs) 41 = x:n —— A cons cell is allocated, but not the 4 or the empty list

We can run it like this: | /N

*Main> let 11 = insertSorted 3 (Cons 2 (Cons 4 Nil))

*Main> 11

Cons 2 (Cons 3 (Cons 4 Nil)) x | 4 n,n2| [

o = = = = ©QACc o = = = =

Introduction Details Introduction Details
Similarly ... Parameters

= 3.1 HASKELL supports parametric polymorphism, like templates in C++ or generics in JAVA.

2n = 1

3n2 = n Parametric Polymorphism

1l =Cons xn
) 1data List a = Cons a (List a)

2 | Nil

» Our own types do the same thing. deriving Sh
3 eriving ow

! [1\

1x1
2x2
3x3

X | 4 n,n2 Nil

Cons 1 (Cons 2 (Cons 4 Nil)) —- List Int
Cons "hi" (Cons "there" Nil) -- List String
Cons Nil (Cons (Cons 5 Nil) Nil) —- List (List Int)

o
i
I
1l
it
o
3
I
1l
it

Introduction
0000

Details Introduction Details
00008000

00080000 0000
!

BST Add

» Here is some code for BST Add!
» Note the dual use of a constructor: both for building and for pattern matching.

1data Tree a = Node a (Tree a) (Tree a)

2 | Empty

3add_bst Integer -> Tree Integer -> Tree Integer
4add_bst i Empty = Node i Empty Empty

sadd_bst i (Node x left right)

6 | i <=x = Node x (add_bst i left) right

7 | otherwise = Node x left (add_bst i right)

Introduction
0000

Functional Updating

» It is important fo understand functional updating.

» We don’t update in place. We make copies, and share whatever we can.
» Example: add 5,3,7toatree t
» let u=add t 6

» let v = add u 1

Details Introduction Details
0000000

0000000 0000
!

Functional Updating

» |t is important fo understand functional updating.

» We don't update in place. We make copies, and share whatever we can.
» Example: add 5,3,7toatreet
> let u=add t 6

» let v = add u 1

t—i{ 5

Functional Updating

» |t is important to understand functional updating.

» We don’t update in place. We make copies, and share whatever we can.
» Example: add 5,3,7toatreet
» let u=add t 6

» let v = add u 1

t—1 5 u

N P
il

1

Introduction Details Introduction Details
0000 00000800 0000 00000080
:

The Maybe Type The Either Type
The Maybe Type The Either Type

1data Maybe a = Just a | Nothing 1data Either a b = Left a | Right b

Remember the lookup function that didn’t know what to do if the item wasn’t in the list? We can use it in places where we want to return something, or else an error message.

1getItem key [] = Left "Key not found"

1getItem key [] = Nothing
2getItem key ((k,v):xs) =

2getItem key ((k,v):xs) =

3 if key == k then Just v 3 if key == k then Right v
4 else getItem key xs 4 else getItem key xs
Example: Example:

*Main> getItem 3 [(2,"french hens"), (3,"turtle doves")]

Right "turtle doves"
*Main> getItem 5 [(2,"french hens"), (3,"turtle doves")]

Left "Key not found"

*Main> getItem 3 [(2,"french hens"), (3,"turtle doves")]
Just "turtle doves"

*Main> getItem 5 [(2,"french hens"), (3,"turtle doves")]
Nothing

Introduction Details
0000 0000000e

You try!

1data Tree a = Branch a (Tree a) (Tree a)
2 | Empty
3 deriving Show

1. Writeadd :: Tree a -> a -> Tree a
2. Writefind :: Tree a -> a -> Bool
3. Write lookup :: Tree (k,v) -> k -> Maybe v

4. Writedelete :: Tree a -> a -> Tree a

