
Introduction Details

Sum Types

Dr. Mattox Beckman

University of Illinois at Urbana-Champaign

Department of Computer Science

Introduction Details

Objectives

I Describe the syntax for declaring disjoint data types inHaskell.

I Show how to use disjoint types to represent lists, expressions, and exceptions.

I Explain the operation and implementation of the list, Maybe and Either data types.
I Use a disjoint datatype to represent an arithmetic calculation.

Introduction Details

Simple Type Definitions

Disjoint Type Syntax

data TName = CName [type · · ·] [| CName [type · · ·] · · ·]

A sum type has three components: a name, a set of constructors, and possible arguments.

1 data Contest = Rock | Scissors | Paper
2 data Velocity = MetersPerSecond Float
3 | FeetPerSecond Float
4 data List a = Cons a (List a)
5 | Nil
6 data Tree a = Node a (Tree a) (Tree a)
7 | Empty

Introduction Details

Example of Contest and Velocity

1 winner Rock Scissors = "Player 1"
2 winner Scissors Paper = "Player 1"
3 winner Paper Rock = "Player 1"
4 winner Scissors Rock = "Player 2"
5 winner Paper Scissors = "Player 2"
6 winner Rock Paper = "Player 2"
7 winner _ _ = "Tie"
8

9 thrust (FeetPerSecond x) = x / 3.28
10 thrust (MetersPerSecond x) = x

Introduction Details

The Most Fun Datatypes Are Recursive

Our Own List Construct

1 data List = Cons Int List
2 | Nil
3 deriving Show
4 insertSorted a Nil = Cons a Nil
5 insertSorted a (Cons b bs)
6 | a < b = Cons a (Cons b bs)
7 | otherwise = Cons b (insertSorted a bs)

We can run it like this:

*Main> let l1 = insertSorted 3 (Cons 2 (Cons 4 Nil))
*Main> l1
Cons 2 (Cons 3 (Cons 4 Nil))

Introduction Details

Type Constructors and Memory
I When a type constructor is invoked, it causes memory to be allocated.

I Writing an integer
I Writing [] or Nil
I Using : or Cons

I Writing down a variable does not cause memory to be allocated.

1 x = 4 -- allocates 4
2 n = [] -- allocates empty list
3 n2 = n -- does NOT allocate memory
4 l = x:n -- A cons cell is allocated, but not the 4 or the empty list

x 4 n,n2 []

l

Introduction Details

Similarly …

1 x = 4
2 n = Nil
3 n2 = n
4 l = Cons x n

I Our own types do the same thing.

x 4 n,n2 Nil

l

Introduction Details

Parameters

Haskell supports parametric polymorphism, like templates in C++ or generics in Java.

Parametric Polymorphism

1 data List a = Cons a (List a)
2 | Nil
3 deriving Show

1 x1 = Cons 1 (Cons 2 (Cons 4 Nil)) -- List Int
2 x2 = Cons "hi" (Cons "there" Nil) -- List String
3 x3 = Cons Nil (Cons (Cons 5 Nil) Nil) -- List (List Int)

Introduction Details

BST Add

I Here is some code for BST Add!

I Note the dual use of a constructor: both for building and for pattern matching.

1 data Tree a = Node a (Tree a) (Tree a)
2 | Empty
3 add_bst :: Integer -> Tree Integer -> Tree Integer
4 add_bst i Empty = Node i Empty Empty
5 add_bst i (Node x left right)
6 | i <= x = Node x (add_bst i left) right
7 | otherwise = Node x left (add_bst i right)

Introduction Details

Functional Updating

I It is important to understand functional updating.

I We don’t update in place. We make copies, and share whatever we can.

I Example: add 5,3,7 to a tree t
I let u = add t 6

I let v = add u 1

t 5

3 7

Introduction Details

Functional Updating

I It is important to understand functional updating.

I We don’t update in place. We make copies, and share whatever we can.

I Example: add 5,3,7 to a tree t
I let u = add t 6

I let v = add u 1

t 5

3 7

u 5

7

6

Introduction Details

Functional Updating

I It is important to understand functional updating.

I We don’t update in place. We make copies, and share whatever we can.

I Example: add 5,3,7 to a tree t
I let u = add t 6

I let v = add u 1

t 5

3 7

u 5

7

6

v 5

3

1

Introduction Details

The Maybe Type

The Maybe Type

1 data Maybe a = Just a | Nothing

Remember the lookup function that didn’t know what to do if the item wasn’t in the list?

1 getItem key [] = Nothing
2 getItem key ((k,v):xs) =
3 if key == k then Just v
4 else getItem key xs
Example:

*Main> getItem 3 [(2,"french hens"), (3,"turtle doves")]
Just "turtle doves"
*Main> getItem 5 [(2,"french hens"), (3,"turtle doves")]
Nothing

Introduction Details

The Either Type

The Either Type

1 data Either a b = Left a | Right b

We can use it in places where we want to return something, or else an error message.

1 getItem key [] = Left "Key not found"
2 getItem key ((k,v):xs) =
3 if key == k then Right v
4 else getItem key xs
Example:

*Main> getItem 3 [(2,"french hens"), (3,"turtle doves")]
Right "turtle doves"
*Main> getItem 5 [(2,"french hens"), (3,"turtle doves")]
Left "Key not found"

Introduction Details

You try!

1 data Tree a = Branch a (Tree a) (Tree a)
2 | Empty
3 deriving Show

1. Write add :: Tree a -> a -> Tree a
2. Write find :: Tree a -> a -> Bool
3. Write lookup :: Tree (k,v) -> k -> Maybe v
4. Write delete :: Tree a -> a -> Tree a

	Introduction
	Objectives

