Introduction Details

0000 00000000
: :

Sum Types

Dr. Mattox Beckman

UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN
DEPARTMENT OF COMPUTER SCIENCE

Introduction Details

Objectives
» Describe the syntax for declaring disjoint data types in HASKELL.
» Show how to use disjoint types to represent lists, expressions, and exceptions.
» Explain the operation and implementation of the list, Maybe and Either data types.
» Use a disjoint datatype fo represent an arithmetic calculation.

Details

Introduction
0000 00000000
:

Simple Type Definitions
Disjoint Type Syntax
data TName = CName [type - - -1 [| CName [type ---1---]

A sum type has three components: a name, a set of constructors, and possible arguments.

1data Contest = Rock | Scissors | Paper
2data Velocity = MetersPerSecond Float

3 | FeetPerSecond Float
sdata List a = Cons a (List a)
5 Nil

|
sdata Tree a = Node a (Tree a) (Tree a)
7 |

Empty

Introduction
0000

Details
00000000

Example of Contest and Velocity

1winner
2winner
3winner
4winner
swinner
swinner
7winner
8

s thrust
10 thrust

Rock Scissors = "Player 1"
Scissors Paper = "Player 1"
Paper Rock = "Player 1"
Scissors Rock = "Player 2"
Paper Scissors = "Player 2"
Rock Paper = "Player 2"

= "Tie"

(FeetPerSecond x) = x / 3.28
(MetersPerSecond x) = x

Introduction Details
000e® 00000000
:

The Most Fun Datatypes Are Recursive
Our Own List Construct

1data List = Cons Int List

2 | Nil

3 deriving Show

s4insertSorted a Nil = Cons a Nil

sinsertSorted a (Cons b bs)
6 | a<b = Cons a (Cons b bs)
7 | otherwise = Cons b (insertSorted a bs)

We can run it like this:

*Main> let 11 = insertSorted 3 (Cons 2 (Cons 4 Nil))

*Main> 11
Cons 2 (Cons 3 (Comns 4 Nil))

Introduction
0000
:

Type Constructors and Memory

Details
» When a type constructor is invoked, it causes memory to be allocated.
» Writing an integer

» Writing [] or Nil

90000000
» Using : or Cons

» Writing down a variable does not cause memory to be allocated.
1x =4 -- allocates 4
2n = [] -- allocates empty list
3n2 = n -- does NOT allocate memory
41 = x:n —— A cons cell ©s allocated,
|

but not the 4 or the
/ \\

nn2| []

empty list
4

Introduction

Details
0000
:

Similarly ...
1x = 4
on = Nil
3n2 = n

41 = Cons X n

» Our own types do the same thing.

/N

X | 4 n,n2/ Nil

u]
8
I
ul
it

Introduction Details
0000

00®00000
:

Parameters

HASKELL supports parametric polymorphism, like templates in C++ or generics in JAVA.
Parametric Polymorphism
1data List a = Cons a (List a)

2 | Nil
3 deriving Show

1x1 = Cons 1 (Cons 2 (Comns 4 Nil)) -- List Int
2x2 = Cons "hi" (Comns "there" Nil) -- List String
3x3 = Cons Nil (Cons (Cons 5 Nil) Nil) -- List (List Int)

u]
8
I
ul
it

Details

Introduction
0000 00000000
:

BST Add

> Here is some code for BST Add!
» Note the dual use of a constructor: both for building and for pattern matching.

1data Tree a = Node a (Tree a) (Tree a)

2 | Empty

sadd_bst :: Integer -> Tree Integer -> Tree Integer
sadd_bst i Empty = Node i Empty Empty

sadd_bst i (Node x left right)

Node x (add_bst i left) right
Node x left (add_bst i right)

6 | 1 <= x
7 | otherwise

Introduction Details

0000 0000@000
: :

Functional Updating

» It is important to understand functional updating.

» We don't update in place. We make copies, and share whatever we can.
» Example: add 5,3,7fo atree t
» let u =add t 6

» let v = add u 1

t—1 5

/N

3 7

Introduction Details

0000 0000@000
: :

Functional Updating

» It is important to understand functional updating.
» We don't update in place. We make copies, and share whatever we can.

» Example: add 5,3,7to atree t
» let u =add t 6

» let v = add u 1

Introduction Details

0000 0000@000
: :

Functional Updating

» It is important to understand functional updating.
» We don't update in place. We make copies, and share whatever we can.

» Example: add 5,3,7to atree t
» let u =add t 6

» let v = add u 1

t— 5 u— 5 V— 5

/{//’E \\ ,/”"_71:)

3 7 7 3
-
6

1

Introduction Details
0000 0000000
:

The Maybe Type
The Maybe Type

1data Maybe a = Just a | Nothing

Remember the lookup function that didn’t know what o do if the item wasn’t in the list?

1getItem key [] = Nothing
2getItem key ((k,v):xs) =

3 if key == k then Just v
4 else getItem key xs
Example:

*Main> getItem 3 [(2,"french hens"), (3,"turtle doves")]

Just "turtle doves"
*Main> getItem 5 [(2,"french hens"), (3,"turtle doves")]

Nothing

Introduction Details
00000080

0000

The Either Type
The Either Type

1data Either a b = Left a | Right b

We can use it in places where we want to return something, or else an error message.

1getItem key [] = Left "Key not found"
2getItem key ((k,v):xs) =

3 if key == k then Right v
4 else getItem key xs
Example:

*Main> getItem 3 [(2,"french hens"), (3,"turtle doves")]

Right "turtle doves"
*Main> getItem 5 [(2,"french hens"), (3,"turtle doves")]

Left "Key not found"

Introduction Details
0000 0000000e
: :

You tfry!

1data Tree a = Branch a (Tree a) (Tree a)
2 | Empty
3 deriving Show

1. Writeadd :: Tree a -> a -> Tree a

2. Writefind :: Tree a -> a -> Bool

3. Write lookup :: Tree (k,v) -> k -> Maybe v
4. Write delete :: Tree a —> a —-> Tree a

	Introduction
	Objectives

