
Objectives If Expressions Functions Conclusions

Closures

Dr. Mattox Beckman

University of Illinois at Urbana-Champaign

Department of Computer Science

Objectives If Expressions Functions Conclusions

Objectives

I Add conditional expressions (if then else) to your language.

I Add functions and function application to your interpreter.

I Explain the parts of a closure and why they are necessary.

Objectives If Expressions Functions Conclusions

Review

I Last time: made an interpreter with arithmetic, booleans, variables, and let.
I This time:

I Add if expressions.
I Add functions and function calls.

I Code can be found in the i5 directory.

Objectives If Expressions Functions Conclusions

Variables and Let Expressions

1 eval (VarExp var) env =
2 case lookup var env of
3 Just val -> val
4 Nothing -> IntVal 0
5

6 eval (LetExp var e1 e2) env =
7 let v1 = eval e1 env
8 in eval e2 (insert var v1 env)

I N.B. The variable let creates disappears after the let body is evaluated!!

Objectives If Expressions Functions Conclusions

For Example

InHaskell…

1 Prelude> let z = 10 in z + 1
2 11
3 Prelude> z
4 <interactive>:2:1: error: Variable not in scope: z

In i5...

i5> let z = 10 in z + 1 end
IntVal 11
i5> z
IntVal 0

Objectives If Expressions Functions Conclusions

Adding If Expressions

1 data Exp = IfExp Exp Exp Exp
2 | ...

i5> if 5 > 2 then 10 else 20 fi
IntVal 10
i5> if 5 > 22 then 10 else 20 fi
IntVal 20

Objectives If Expressions Functions Conclusions

The Eval

1 eval (IfExp e1 e2 e3) env =
2 let v1 = eval e1 env
3 in case v1 of
4 BoolVal True -> eval e2 env
5 _ -> eval e3 env

Objectives If Expressions Functions Conclusions

Adding Functions to Our Language

I Consider this function application inHaskell.

1 (\x -> x + 10) 20

I We have:

I A parameter
I A function body
I An argument

Objectives If Expressions Functions Conclusions

Adding Functions: Take 1

1 (\x -> x + 10) 20
2 => AppExp
3 (FunExp "x" (IntOpExp "+" (VarExp "x") (IntExp 10)))
4 (IntExp 20)

I The following attempt almost works.

1 data Exp = FunExp String Exp
2 | AppExp Exp Exp | ...
3 data Val = FunVal String Exp | ...
4

5 eval (FunExp v body) env = FunVal v body
6 eval (AppExp e1 e2) env =
7 let (FunVal v body) = eval e1 env
8 arg = eval e2 env
9 in eval body (insert v arg env)

Objectives If Expressions Functions Conclusions

What Could Possibly Go Wrong?

I Consider this function definition and function call.

1 Main> let f =
2 \ x -> x + 10
3 in f 20
4 30

I Now we use a second let to define the increment.

1 Main> let f =
2 let delta = 10
3 in \ x -> x + delta
4 in f 20
5 30

I When we run f 20, is delta still in scope?

Objectives If Expressions Functions Conclusions

The Need for Closures

I Now consider this one. We have two variables called delta!
I How does the function know which one to use?

1 Main> let f =
2 let delta = 10 in \ x -> x + delta
3 in
4 let delta = 20 in f 20
5 30 --- Why not 40??

Objectives If Expressions Functions Conclusions

Closures

I The “function value” needs to remember the values of free variables in its function body.

I The resulting data structure is called a closure.

1 data Exp = FunExp String Exp
2 | AppExp Exp Exp | ...
3 data Val = Closure String Exp Env | ...
4

5 eval (FunExp v body) env = Closure v body env
6 eval (AppExp e1 e2) env =
7 let (Closure v body clenv) = eval e1 env
8 arg = eval e2 env
9 in eval body (insert v arg clenv)

Objectives If Expressions Functions Conclusions

An Example Evaluation

I Let’s evaluate this expression:

let d = 10 in \ x -> x + d

I Initial call to eval:

eval (LetExp "d" (IntExp 10)
(FunExp "x" (IntOpExp "+"

(VarExp "x") (VarExp "d"))))
[]

I Step 1: eval will be called on the IntExp 10 to get the value of d.

eval (IntExp 10) [] => IntVal 10

Objectives If Expressions Functions Conclusions

Example, Continued

I Now d is part of the environment when we evaluate the body of the let.

eval (FunExp "x" (IntOpExp "+"
(VarExp "x")
(VarExp "d")))

[("d",IntVal 10)]
=> Closure "x" (IntOpExp "+"

(VarExp "x")
(VarExp "d"))

[("d",IntVal 10)]

Objectives If Expressions Functions Conclusions

Now Let’s Call the Function!

let f =
let d = 10 in \ x -> x + d

in let y = 20 in f y

eval (LetExp "f"
(LetExp "d" (IntExp 10)

(FunExp "x"
(IntOpExp "+"

(VarExp "x") (VarExp "d"))))
(LetExp "y" (IntExp 20)

(AppExp (VarExp "f") (VarExp "y"))))
[]

Objectives If Expressions Functions Conclusions

Now Let’s Call the Function! Pt 2

I After the function has been evaluated into a closure …

eval (LetExp "y" (IntExp 20)
(AppExp (VarExp "f") (VarExp "y")))

[("f", Closure "x"
(IntOpExp "+"

(VarExp "x") (VarExp "d"))
[("d",IntVal 10)]]

Objectives If Expressions Functions Conclusions

Now Let’s Call the Function! Pt 3

I After the function has been evaluated into a closure …

I And y has been defined …

eval (AppExp (VarExp "f") (VarExp "y"))
[("y",IntVal 20)
,("f", Closure "x"

(IntOpExp "+"
(VarExp "x") (VarExp "d"))

[("d",IntVal 10)]]

Objectives If Expressions Functions Conclusions

Reminder of the Code

eval (AppExp (VarExp "f") (VarExp "y"))
[("y",IntVal 20)
,("f", Closure "x"

(IntOpExp "+"
(VarExp "x") (VarExp "d"))

[("d",IntVal 10)]]

I Remember what eval says to do with function calls.

1 eval (AppExp e1 e2) env =
2 let (Closure v body clenv) = eval e1 env
3 arg = eval e2 env
4 in eval body (insert v arg clenv)

Objectives If Expressions Functions Conclusions

Now Let’s Call the Function! Pt 4

eval (AppExp (VarExp "f") (VarExp "y"))
[("y",IntVal 20)
,("f", Closure "x"

(IntOpExp "+"
(VarExp "x") (VarExp "d"))

[("d",IntVal 10)]]

I We unfold the f and y values …

eval (IntOpExp "+" (VarExp "x") (VarExp "d"))
[("x", eval (VarExp "y") [("y",IntVal 20)), ...]
,("d", IntVal 10)]

Objectives If Expressions Functions Conclusions

Conclusions

I Some history

I The first language to use closures (and call them that) was Peter Landin’s SECD machine.
I The first widespread use of closures was in Scheme, a dialect of Lisp.
I Today they are very common!

I Things to try

I What if you wanted C-style ifs?
I Try some other examples of function calls.
I Try making multi-parameter functions.

