

	<ロ><週><夏><夏><	〈ロ〉〈切〉〈叫〉〈叫〉、叫、ろんぐ				≣ • ୨ ۹.୯	
Objectives O	Judgments ●00000	Proof Trees OO	References O	Objectives O	Judgments ●00000	Proof Trees OO	References O
Judgments				Judgments			
A judgment is an ass	ertion about a syntactic object.			A judgment is an ass	sertion about a syntactic object.		

Examples:

- Examples:
 - 3 is odd

The Parts of a Rule

- We can also define judgments inductively.
- Let $J, J_1, J_2, \ldots J_n$ be a set of judgments.
- Then we can have a *rule* as follows:

$$\frac{J_1 \qquad J_2 \qquad \cdots \qquad J_n}{J} \text{ Label}$$

The Parts of a Rule

- ► We can also define judgments inductively.
- Let $J, J_1, J_2, \ldots J_n$ be a set of judgments.
- ► Then we can have a *rule* as follows:

$$\frac{J_1 \qquad J_2 \qquad \cdots \qquad J_n}{J} \text{ Label}$$

- The $J_1 \ldots J_n$ are called assumptions or premises.
- ► J is called a conclusion.

		< □ ▶ <	B ト 4 E ト 4 E ト E りへの			< □ > < ₫	・ (目) (目) (目) (日) (日)
Objectives O	Judgments 000000	Proof Trees O●	References O	Objectives O	Judgments 000000	Proof Trees ⊙●	References O
Using Proof Trees to Prove			Using Proof Trees to Prove				
How to use it:				How to use it	:		
Start with the judgment you want to prove.				Start wi	th the judgment you want to prov	e.	

Decide which rule applies.

- Decide which rule applies.
- ► Recursively prove first subexpression.

$$4+7 \operatorname{is} \operatorname{odd}^{\mathsf{EVEN}+\mathsf{Odd}}$$

- Mod0, 4 mod 2 = 04 is even Even+Odd 4+7 is odd

Objectives O	Judgments 000000	Proof Trees ○●	References Objectives O O	Judgments 000000	Proof Trees	References •

Using Proof Trees to Prove

How to use it:

- Start with the judgment you want to prove.
- Decide which rule applies.
- ► Recursively prove first subexpression.
- ► Recursively prove second subexpression.

References

[Har12] Robert Harper. Practical Foundations for Programming Languages. 2012, p. 496. DOI: 10.1017/CB09781139342131.

・ロ・・四・・ヨ・・ヨ・ りゃぐ