

		< □ > < @ > < \ > < \ > < \ > > < \ > > < \ > > < \ > > < \ > > < \ > > < \ > > < \ > > < \ > > < \ > > < \ > > < \ > > < \ > > < \ > > < \ > > < \ > > < \ > > < \ > > < \ > > < \ > > < \ > > < \ > > < \ > > < \ > > < \ > > < \ > > < \ > > < \ > > < \ > > < \ > > < \ > > < \ > > < \ > > < \ > > < \ > > < \ > > < \ > > < \ > > < \ > > < \ > > < \ > > < \ > > < \ > > < \ > > < \ > > < \ > > < \ > > < \ > > < \ > > < \ > > < \ > > < \ > > < \ > > < \ > > < \ > > < \ > > < \ > > < \ > > < \ > > < \ > > < \ \ > > < \ > > < \ > > < \ > > < \ > > < \ > > < \ > > < \ > > < \ > > < \ > > < \ > > < \ > > < \ > > < \ > > < \ > > < \ > > < \ > > < \ > > < \ > > < \ > > < \ > > < \ > > < \ > > < \ > > < \ > > < \ > > < \ > > < \ > > < \ > > < \ > > < \ > > < \ > > < \ > > < \ > > < \ > < \ > > < \ > > < \ > > < \ > > < \ > > < \ > > < \ > > < \ > > < \ > > < \ > > < \ > > < \ > > < \ > > < \ > > < \ > > < \ > > < \ > > < \ > > < \ > > < \ > > < \ > > < \ > > < \ > > < \ > > < \ > > < \ > > < \ > < \ > > < \ > > < \ > > < \ > > < \ > > < \ > > < \ > > < \ > > < \ > > < \ > > < \ > > < \ > > < \ > > < \ > > < \ > > < \ > > < \ > > < \ > > < \ > > < \ > > < \ > > < \ > > < \ > > < \ > > < \ > > < \ > > < \ > > < \ > > < \ > > < \ > > < \ > > < \ > > < \ > > < \ > > < \ > > < \ > > < \ > > < \ > > < \ > > < \ > > < \ > > < \ > > < \ > > < \ > > < \ > > < \ > > < \ > > < \ > > < \ > > < \ > > < \ > > < \ > < \ > < \ > > < \ > < \ > > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ > < \ \ > < \ \ > < \ \ > < \ \ > < \ \ > < \ \ > < \ \ > < \ \ > < \ \ > <\ \ \ > <\ \ \ > <\ \ \ > <\ \ \ > <\ \ \ \	E			<ロ> < 部> < 語> < 目>	≣
Introduction	The Rules	Proof Trees	Conclusion	Introduction	The Rules	Proof Trees	Conclusion
O●O	000000	OO	O	00•	000000	00	O

Grammar for Simple Imperative Programming Language

The Language

$$S ::= skip$$

$$| u := A$$

$$| S_1; S_2$$

$$| if B then S_1 else S_2 fi$$

$$| while B do S_1 od$$

$$B ::= E \sim E$$

$$| true | false$$

$$E ::= u$$

$$| int$$

$$| E \oplus E$$

The Downarrow Notation

 \blacktriangleright In small step semantics we use the \rightarrow to represent one step of computations.

► In big step semantics we use \Downarrow to represent an entire evaluation. Statements $<\mathsf{S}, \sigma>\Downarrow \sigma'$

Expressions

Booleans

 $< {\it E}, \sigma > \Downarrow_{\it e} {\it v}$

 $< B, \sigma > \Downarrow_b b$

• Let *u* be a possibly subscripted variable.

► *E* represents arithmetic expressions, ⊕ is an arithmetic operator.

Introduction 000	The Rules ●00000	Proof Trees 00	Conclusion Introduction o ooo	The Rules ○●0000	Proof Trees 00	Conclusion O
Expressions			Boolean I	Expressions		
Integers		Variables	Boole	eans	Variables	
$\langle i,\sigma angle$, Const	$\overline{\langle u,\sigma > \Downarrow_e v}$ Var		$-\!$	$\overline{\langle u,\sigma \rangle}$	/ar
if <i>i</i> is an integer. Operations		if $u := v \in \sigma$.		is a boolean. onal Operators	if $u := v \in \sigma$.	
	$\frac{\langle e_1, \sigma \rangle \Downarrow_e v_1}{\langle e_1 \oplus e_2, \sigma \rangle}$	$<\!$		$\frac{\langle \mathbf{e}_1, \sigma \rangle \Downarrow_{\mathbf{e}} \mathbf{v}_1}{\langle \mathbf{e}_1 \sim \mathbf{e}_2, \sigma}$	$rac{\langle e_2,\sigma > \Downarrow_e v_2}{ ightarrow \downarrow_b v_1 \sim v_2}$ Rel	
Here \oplus represents typ	ical binary operations li	ke $+,-, imes$, etc.	Here \sim	represents the binary relational operational o	tions $=, \leq, \geq, \neq, \geq, \leq$, etc.	
		< □> < () > <) > <) > <) > <) > <) > <) > <) > <) > <) > <) > <) > <) > <) > <) > <) > <) > <) > <) > <) > <) > <) > <) > <) > <) > <) > <) > <) > <) > <) > <) > <) > <) > <) > <) > <) > <) > <) > <) > <) > <) > <) > <) > <) > <) > <) > <) > <) > <) > <) > <) > <) > <) > <) > <) > <) > <) > <) > <) > <) > <) > <) > <) > <) > <) > <) > <) > <) > <) > <) > <) > <) > <) > <) > <) > <) > <) > <) > <) > <) > <) > <) > <) > <) > <) > <) > <) > <) > <) > <) > <) > <) > <) > <) > <) > <) > <) > <) > <) > <) > <) > <) > <) > <) > <) > <) > <) > <) > <) > <) > <) > <) > <) > <) > <) > <) > <) > <) > <) > <) > <) > <) > <) > <) > <) > <) > <) > <) > <) > <) > <) > <) > <) > <) > <) > <) > <) > <) > <) > <) > <) > <) > <) > <) > <) > <) > <) > <) > <) > <) > <) > <) > <) > <) > <) > <) > <) > <) > <) > <) > <) > <) > <) > <) > <) > <) > <) > <) > <) > > <) > <) > <) > <) > <) > <) > <) > <) > <) > <) > <) > <) > <) > <) > > <) > <) > <) > <) > <) > <) > <) > <) > <) > > <) > <) > <) > <) > <) > <) > <) > <) > <) > <) > > <) > <) > > <) > <) > > <) > > <) > > <) > > <) > > <) > > <) > > <) > > <) > > <) > > <) > > <) > > <) > > <) > > <) > > <) > > <) > > <) > > <) > > <) > > <) > > <) > > <) > > <) > > > <) > > <) > > > <) > > > <) > > > <) > > > >	< ≧ > ≧ ∽9∢⊙		< = > < 🗗	→ < 言 > < 言 > → 言 → のへの
Introduction 000	The Rules 00●000	Proof Trees OO	Conclusion Introduction 0 000	The Rules 00●000	Proof Trees 00	Conclusion O

Skip and Assignment

 $\overline{ < \mathbf{skip}\,, \sigma > \Downarrow \, \sigma} \, \operatorname{Skip}$

 $\frac{<\!e,\sigma>\!\Downarrow_e v}{<\!x:=\!e,\sigma>\!\Downarrow\sigma[x:=\!v]}\operatorname{Assign}$

Skip and Assignment

$$\overline{\ \ < \mathbf{skip}\,,\sigma>\Downarrow \sigma}\,\,\mathsf{Skip}$$

$$\frac{\langle e, \sigma \rangle \Downarrow_e v}{\langle x := e, \sigma \rangle \Downarrow \sigma[x := v]} \text{Assign}$$

Next is sequencing. See if you can guess what the rule looks like.

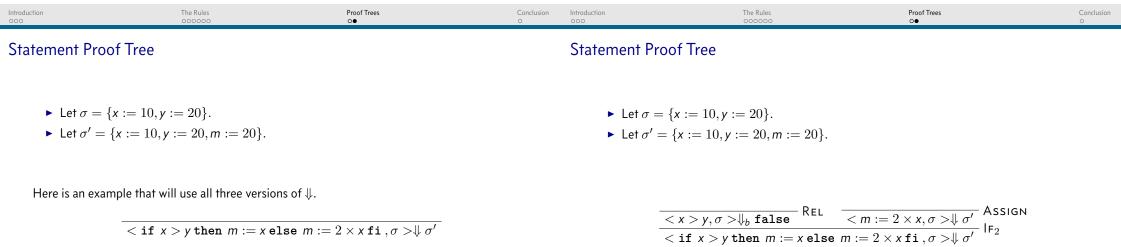
▲□ > ▲母 > ▲目 > ▲目 > ● ● ● ●

Introduction 000	The Rules 000●00	Proof Trees 00	Conclusion O	Introduction 000	The Rules 000●00	Proof Trees 00	Conclusion O
Sequencing				Sequencing			
	$\frac{\langle S_1, \sigma \rangle \Downarrow \sigma' \langle S_2, \sigma' \rangle}{\langle S_1; S_2, \sigma \rangle \Downarrow \sigma''}$	<u>>₩ σ″</u> Seq		Next is if . There are	$\frac{\Downarrow\sigma'\Downarrow}$ two rules for this. See if you of	$\frac{\sigma_{2},\sigma'>\Downarrow\sigma''}{\sigma''}$ SEQ	9.
Introduction 000	The Rules 0000€0	<ロト < 合 > く ミ > く ミ > Proof Trees oo	≣ প্র্ে Conclusion o	Introduction 000	The Rules 0000●0	< □ > < ☐ > < ≥ Proof Trees OO	> ∢き> き のへで Conclusion o
If Statements				If Statements			
	$\begin{array}{c c} < B, \sigma > \Downarrow_b \ \texttt{true} & < S_1, \sigma \\ \hline < \texttt{if } B \ \texttt{then } S_1 \ \texttt{else } S_2 \ \texttt{fi} \ , \\ \hline < B, \sigma > \Downarrow_b \ \texttt{false} & < S_2, \\ \hline < \texttt{if } B \ \texttt{then } S_1 \ \texttt{else } S_2 \ \texttt{fi} \ , \end{array}$				$\frac{\langle B, \sigma \rangle \Downarrow_b \text{ true }}{\langle \text{ if } B \text{ then } S_1 \text{ else } S_2}$ $\frac{\langle B, \sigma \rangle \Downarrow_b \text{ false }}{\langle \text{ if } B \text{ then } S_1 \text{ else } S_2}$		

Next is **while**. There are two rules for this. See if you can guess what the rules looks like. The second one uses induction!

- To show the effect of a program, we need to build proof trees.
- Let $\sigma = \{x := 3, y := 4\}.$
- We want to prove that $2 \times y + 9 \times x = 35$.

Because of precedence rules, we evaluate the + last.


$$\frac{\boxed{<2 \times \mathbf{y}, \sigma > \Downarrow_{\mathbf{e}} 8} \quad \boxed{<9 \times \mathbf{x}, \sigma > \Downarrow_{\mathbf{e}} 27}}{<2 \times \mathbf{y} + 9 \times \mathbf{x}, \sigma > \Downarrow_{\mathbf{e}} 35} \mathsf{Arith}$$

- To show the effect of a program, we need to build proof trees.
- Let $\sigma = \{x := 3, y := 4\}.$
- We want to prove that $2 \times y + 9 \times x = 35$.

We go up one more level, and then we are done.

$$\frac{ \overbrace{<2,\sigma>\Downarrow_{e}2}^{} \operatorname{Const} }{ \underbrace{<2\times y,\sigma>\Downarrow_{e}8}^{} \operatorname{Arith} } \frac{\operatorname{Var}_{} \operatorname{Arith} }{ \underbrace{<9,\sigma>\Downarrow_{e}9}^{} \operatorname{Const} } \frac{ \overbrace{\Downarrow_{e}3}^{} \operatorname{Var}_{} \operatorname{Arith} }{ \underbrace{<9\times x,\sigma>\Downarrow_{e}27}^{} \operatorname{Arith} } \operatorname{Arith} }$$

・ロ・・母・・ヨ・・ヨ・ タック・

Can you figure out what this tree should look like?

		<ロ><日><日><日><日><日><日><日><日><日><日><日><日><日>	5 DQC			< □ > < @ > < ≧ > < ≧ >	5 9 9 9
Introduction	The Rules	Proof Trees	Conclusion	Introduction	The Rules	Proof Trees	Conclusion
000	000000	⊙●	O	000	000000	00	•

Statement Proof Tree

Connecting to Interpreters

- Let $\sigma = \{x := 10, y := 20\}.$
- Let $\sigma' = \{x := 10, y := 20, m := 20\}.$

- The \Downarrow is really just eval that you already know and love.
- The σ is just the env parameter.

$-\!$	$\overline{\langle \langle y, \sigma \rangle \downarrow_e 20} $ Var	$\overline{\ <2,\sigma>\Downarrow_{e}2}$ Const	$\overline{\langle x,\sigma \rangle \Downarrow_e 10}$ Var		
$< x > y, \sigma >$	$\Rightarrow \Downarrow_b false$ REL	$< m := 2 \times x,$	$\sigma \gg \sigma'$ Assign		
$< ext{if } x > y ext{ then } m := x ext{ else } m := 2 imes x ext{ fi}, \sigma > \Downarrow \sigma'$					