Introduction The Rules Proof Trees Conclusion Introduction The Rules Proof Trees Conclusion
000 000000 00 [e] @00 000000 00 [e]
Objectives
Big Step Semantics
» Describe the components of a big step semantic rule.
Dr. Mattox Beckman » Use semantic rules to document the meaning of simple programming language.
UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN » Explain the correspondence between big step semantics and the eval function.
DEPARTMENT OF COMPUTER SCIENCE
Introduction The Rules Proof Trees Conclusion Introduction The Rules Proof Trees Conclusion
oeo 000000 [e]e] (e} ooce 000000 [e]e] (e}
!

Grammar for Simple Imperative Programming Language

The Language

w
SN | IR | —

skip

u:=A

S$1;52

if Bthen S; else Sy fi
while Bdo Si od
E~E

true |false

u

int

E®E

> Let u be a possibly subscripted variable.
» E represents arithmetic expressions, & is an arithmetic operator.

The Downarrow Notation

» In small step semantics we use the — to represent one step of computations.

» In big step semantics we use |} to represent an entire evaluation.

Statements
<S,o>|d

Expressions
<Eo>lev

Booleans
<B,o>|yb

Introduction The Rules Proof Trees Conclusion Introduction The Rules
000 ©00000 00

[e] 000
!

Proof Trees Conclusion
0®0000 00

[e]

Expressions Boolean Expressions

Integers Variables Booleans Variables
— T —————— VAR —————— CoNSsT ——————— VAR
<i,o>ei Cons <u,o >ev <b,o>|pb <u,o>pv
if i is an integer. ifu:=veo. if bis a boolean. ifu:=veo.
Operations Relational Operators
<er,0 >levi < ey, 0 >evo A <ep,o>evi <ez,0 >levo REL
RITH
<ei1D®es, 0 >eviDvy <ep~ez,0>{p vy ~ve
Here @ represents typical binary operations like 4, —, X, etc. Here ~ represenfs the binary relational operations =, <, >, #, >, <, etc.
Introduction The Rules Proof Trees Conclusion Introduction The Rules Proof Trees Conclusion
: [e]e]e) [e]e] lelele} [e]e] (e} [e]e]e) [e]e] lelele} [e]e] (e}
Skip and Assignment Skip and Assignment
SKkip - Skip
< skip,o > o < skip,o >| o
<e, o>V
<e,o>lev ASSIGN —— < ASSIGN
<x:=e,0>|ox:=V] <x:=eo0>| o=V

Next is sequencing. See if you can guess what the rule looks like.

Introduction The Rules Proof Trees Conclusion Introduction The Rules Proof Trees Conclusion
000 000800 00 o) 000 000®00 00 o)
:

Sequencing Sequencing

<Si,o0>|o < S9,0" > o”

< S1,0 > o < So,0’ > o
SEQ < S$1;82,0 > o”

< S51;S9,0 > o

SEQ

Next is if . There are two rules for this. See if you can guess what the rules looks like.

Introduction The Rules Proof Trees Conclusion Introduction The Rules Proof Trees Conclusion
| 000 0000®0 00 [e) 000 0000e0 00 [e)
If Statements If Statements
5 S , < B,o >l true <Si,0>|o e
1
<B,0 >{p true <Suo>do IFq < if Bthen Sjelse Sofi,o > o’

< if Bthen Sielse Sy fi,o > o

< B,o >, false < Sq,0 > o
IFo < if Bthen Sjelse Sofi,o > o’

< B,o >, false <So, 0> o’ IFo

< if Bthen Sjelse Sofi,o > o’

Next is while . There are two rules for this. See if you can guess what the rules looks like. The
second one uses induction!

Introduction The Rules Proof Trees Conclusion Introduction The Rules Proof Trees Conclusion
000 000008 00 o) 000 000000 ®0 o)
:

While Statements Proof Trees

» To show the effect of a program, we need to build proof trees.

<B,o >|, false > Leto = {x:=3,y:=4}.

- WHILE;
<while Bdo Sod, 0 >} o » We want fo prove that 2 X y + 9 x x = 35.
< B,o >l true <S,0>|0o < while Bdo Sod,o' >| o” WHILE
< while Bdo Sod,o > o 2 _ . o
Here is what we want to evaluate. What kind of expression is this?
<2Xy+9xx,0 > 35
Introduction The Rules Proof Trees Conclusion Introduction The Rules Proof Trees Conclusion
Proof Trees Proof Trees
» To show the effect of a program, we need to build proof trees. > To show the effect of a program, we need fo build proof trees.
» Leto = {x:=3,y :=4}. » Leto = {x:=3,y :=4}.
» We want to prove that 2 x y + 9 x x = 35. » We want to prove that 2 X y + 9 x x = 35.
We go up one more level, and then we are done.
Because of precedence rules, we evaluate the + last.
————7 &5 CoNsT ————— VAR ———— 7 CONST ————— VAR
<2><Y70_>‘U68 <9XX,U>»U/927 < 2,0 > 2 <y,o0>{.4 ARITH <9,0>9 <x,0>{.3 ARITH
<2xXy+9xx,0 >l 35 ARITH <2xy,0>{8 <Oxwo>he2l

<2Xy+9xx,0>{ 35

Introduction The Rules Proof Trees
000 000000 oce

Conclusion Introduction The Rules Proof Trees
o) 000 000000 oce

Conclusion
o)

Statement Proof Tree

» Leto = {x:=10,y := 20}.
> Leto’ = {x:=10,y := 20,m := 20}.

Statement Proof Tree

» Leto = {x:=10,y := 20}.
» Leto’ = {x:=10,y := 20,m := 20}.

Here is an example that will use all three versions of |}.

ASSIGN
<x>y,0>|, false REL <m:=2xx,0>|0

< if x >ythen m:=xelse m:=2xxfi,o > o . - IFo
y ’ U <if x>ythen m:=xelse m:=2xxfi,oc >| o’
Can you figure out what this tree should look like?
Introduction The Rules Proof Trees Conclusion Introduction The Rules Proof Trees Conclusion
000 000000 oce [e) 000 000000 00 °

Statement Proof Tree Connecting to Interpreters

» Leto = {x:= 10,y := 20}.
» Leto’ = {x:=10,y := 20,m := 20}.

» The |} isreally just eval that you already know and love.

» The o is just the env parameter.

S eETE—— CONST ———————+ VAR
< x,0 >, 10 VAR <y,o > 20 VAR < 2,0 > 2 <x,0 > 10
REL n ASSIGN
<x>y,o>|, false <m:=2xx,0>|0 e
2

< if x > ythen m:=xelse m: =2 xxfi,o >| o’

