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Objectives

I Describe the components of a big step semantic rule.

I Use semantic rules to document the meaning of simple programming language.

I Explain the correspondence between big step semantics and the eval function.
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Grammar for Simple Imperative Programming Language

The Language

S ::= skip
| u := A

| S1; S2
| if B then S1 else S2 fi
| while B do S1 od

B ::= E ∼ E

| true | false
E ::= u

| int

| E ⊕ E

I Let u be a possibly subscripted variable.

I E represents arithmetic expressions,⊕ is an arithmetic operator.

I B represents boolean expressions,∼ represents relationals.
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The Downarrow Notation

I In small step semantics we use the→ to represent one step of computations.

I In big step semantics we use ⇓ to represent an entire evaluation.

Statements

< S, σ >⇓ σ′

Expressions

< E, σ >⇓e v

Booleans

< B, σ >⇓b b
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Expressions

Integers

Const
< i, σ >⇓e i

if i is an integer.

Variables

Var
< u, σ >⇓e v

if u := v ∈ σ.

Operations

< e1, σ >⇓e v1 < e2, σ >⇓e v2
Arith

< e1 ⊕ e2, σ >⇓e v1 ⊕ v2

Here⊕ represents typical binary operations like+,−,×, etc.



Introduction The Rules Proof Trees Conclusion

Boolean Expressions

Booleans

Const
< b, σ >⇓b b

if b is a boolean.

Variables

Var
< u, σ >⇓b v

if u := v ∈ σ.

Relational Operators

< e1, σ >⇓e v1 < e2, σ >⇓e v2
Rel

< e1 ∼ e2, σ >⇓b v1 ∼ v2

Here∼ represents the binary relational operations=,≤,≥, 6=,≥,≤, etc.
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Skip and Assignment

Skip
< skip , σ >⇓ σ

< e, σ >⇓e v
Assign

< x := e, σ >⇓ σ[x := v]
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Skip and Assignment

Skip
< skip , σ >⇓ σ

< e, σ >⇓e v
Assign

< x := e, σ >⇓ σ[x := v]

Next is sequencing. See if you can guess what the rule looks like.
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Sequencing

< S1, σ >⇓ σ′ < S2, σ
′ >⇓ σ′′

Seq
< S1; S2, σ >⇓ σ′′
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Sequencing

< S1, σ >⇓ σ′ < S2, σ
′ >⇓ σ′′

Seq
< S1; S2, σ >⇓ σ′′

Next is if . There are two rules for this. See if you can guess what the rules looks like.
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If Statements

< B, σ >⇓b true < S1, σ >⇓ σ′
If1

< if B then S1 else S2 fi , σ >⇓ σ′

< B, σ >⇓b false < S2, σ >⇓ σ′
If2

< if B then S1 else S2 fi , σ >⇓ σ′
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If Statements

< B, σ >⇓b true < S1, σ >⇓ σ′
If1

< if B then S1 else S2 fi , σ >⇓ σ′

< B, σ >⇓b false < S2, σ >⇓ σ′
If2

< if B then S1 else S2 fi , σ >⇓ σ′

Next is while . There are two rules for this. See if you can guess what the rules looks like. The

second one uses induction!
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While Statements

< B, σ >⇓b false
While1< while B do S od , σ >⇓ σ

< B, σ >⇓b true < S, σ >⇓ σ′ < while B do S od , σ′ >⇓ σ′′
While2

< while B do S od , σ >⇓ σ′′
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Proof Trees

I To show the effect of a program, we need to build proof trees.

I Let σ = {x := 3, y := 4}.
I We want to prove that 2× y+ 9× x = 35.

Here is what we want to evaluate. What kind of expression is this?

< 2× y+ 9× x, σ >⇓e 35
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Proof Trees

I To show the effect of a program, we need to build proof trees.

I Let σ = {x := 3, y := 4}.
I We want to prove that 2× y+ 9× x = 35.

Because of precedence rules, we evaluate the + last.

< 2× y, σ >⇓e 8 < 9× x, σ >⇓e 27
Arith

< 2× y+ 9× x, σ >⇓e 35
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Proof Trees

I To show the effect of a program, we need to build proof trees.

I Let σ = {x := 3, y := 4}.
I We want to prove that 2× y+ 9× x = 35.

We go up one more level, and then we are done.

Const
< 2, σ >⇓e 2

Var
< y, σ >⇓e 4

Arith
< 2× y, σ >⇓e 8

Const
< 9, σ >⇓e 9

Var
< x, σ >⇓e 3

Arith
< 9× x, σ >⇓e 27

Arith
< 2× y+ 9× x, σ >⇓e 35
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Statement Proof Tree

I Let σ = {x := 10, y := 20}.
I Let σ′ = {x := 10, y := 20,m := 20}.

Here is an example that will use all three versions of ⇓.

< if x > y then m := x else m := 2× x fi , σ >⇓ σ′

Can you figure out what this tree should look like?
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Statement Proof Tree

I Let σ = {x := 10, y := 20}.
I Let σ′ = {x := 10, y := 20,m := 20}.

Rel
< x > y, σ >⇓b false

Assign
< m := 2× x, σ >⇓ σ′

If2
< if x > y then m := x else m := 2× x fi , σ >⇓ σ′
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Statement Proof Tree

I Let σ = {x := 10, y := 20}.
I Let σ′ = {x := 10, y := 20,m := 20}.

Var
< x, σ >⇓e 10

Var
< y, σ >⇓e 20

Rel
< x > y, σ >⇓b false

Const
< 2, σ >⇓e 2

Var
< x, σ >⇓e 10

Assign
< m := 2× x, σ >⇓ σ′

If2
< if x > y then m := x else m := 2× x fi , σ >⇓ σ′
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Connecting to Interpreters

I The ⇓ is really just eval that you already know and love.

I The σ is just the env parameter.
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