Introduction The Rules Proof Trees Conclusion

000 000000 00 o
:

Big Step Semantics

Dr. Mattox Beckman

UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN
DEPARTMENT OF COMPUTER SCIENCE

Introduction The Rules Proof Trees Conclusion

@00 000000 00 o
:

Objectives

» Describe the components of a big step semantic rule.
» Use semantic rules to document the meaning of simple programming language.

» Explain the correspondence between big step semantics and the eval function.

Introduction The Rules Proof Trees Conclusion
(o] le} 000000 [e]e] [e]

Grammar for Simple Imperative Programming Language
The Language

skip

u:=A

S1; 52

if Bthen S; else Sy fi
while Bdo S;od
E~E

true |false

u

int

E®E

w
S | I |

> Letfu be a possibly subscripted variable.
» [represents arithmetic expressions, & is an arithmetic operator.

Introduction The Rules Proof Trees Conclusion

ooe 000000 00 o
:

The Downarrow Notation

» In small step semantics we use the — to represent one step of computations.
» In big step semantics we use |} fo represent an entire evaluation.
Statements
<S,o>do

Expressions
<E o>V

Booleans
<B,o>|pb

Introduction The Rules Proof Trees Conclusion

Expressions
Integers Variables
i — ————— 7 VAR
<iyo>|ei ConsT <u,o >ev
if i is an integer. ifu:=veo.
Operations

<er,o >levy < ez, 0 >evo

ARITH
<ei®ez, o >eviDvy

Here & represents typical binary operations like +, —, X, etc.

Introduction The Rules Proof Trees Conclusion

000 000000 00 o
:

Boolean Expressions

Booleans Variables

P T ———— VAR
<b,o>|pb ConsT <u,o0>pv v

if b is a boolean. ifu:=veo.
Relational Operators

<ep,o >lle %1 < e, 0 >Ue Vo
<eyp~eg o >pvy~ve

REL

Here ~ represents the binary relational operations =, <, >, £, > <, efc.

Introduction
000

Skip and Assignment

The Rules
e

Proof Trees
00

Conclusion
0

< skip,o > o

<ea0’ >“U'eV

<Xx:=e,0 >ll0’[x —]

SK|P

ASS'GN

Introduction The Rules Proof Trees
[e]e]e] 00@000 [e]e]

Conclusion
[e]

Skip and Assignment

< skip,oc >| o SKIP

<e,o>ev
<x:=e,o >| olx:=V]

ASSIGN

Next is sequencing. See if you can guess what the rule looks like.

Introduction

The Rules Proof Trees Conclusion
| 000 000800 00 o
Sequencing
<S1,0 >0 < S9,0' > o
i SEQ
< $1;S9,0 > o

Introduction The Rules Proof Trees Conclusion

000 [e]e]e] le]e] 00 o
:

Sequencing

<Si1,0 >0 < S9,0' > o

SE
< S51;89,0 > o e

Next is if . There are two rules for this. See if you can guess what the rules looks like.

Introduction The Rules Proof Trees Conclusion

000 0000e0 00 o
:

[f Statements

< B,o > true <S1,0 >0 e
1

< if Bthen Sjelse Sy fi,o > o’

< B,o >|, false <S9, 0> o e
2

< if Bthen Sjelse Syfi,o > o’

Introduction The Rules Proof Trees Conclusion

000 0000e0 00 o
:

[f Statements

< B,o > true <S1,0 >0 e
< if Bthen S;else Sofi,o > o’ !
<B,o >|, false <S9,0 > o e

2

< if Bthen Syelse Sy fi,o > o’

Next is while . There are two rules for this. See if you can guess what the rules looks like. The
second one uses induction!

Introduction The Rules Proof Trees Conclusion

000 00000e 00 o
:

While Statements

< B,o >], false
< while Bdo Sod,o >l o

WHILE

< B,o >, true <S,o0>|o < while Bdo Sod,o’ >| o”
< while Bdo Sod,o > o”

WHILEg

Introduction The Rules Proof Trees Conclusion

000 000000 o0 o
:

Proof Trees

» To show the effect of a program, we need to build proof trees.
> Leto = {x:=3,y:=4}.
» We want to prove that 2 X y +9 x x = 35.

Here is what we want fo evaluate. What kind of expression is this?

<2Xy+9xx,0 > 35

Introduction The Rules Proof Trees Conclusion

000 000000 o0 o
:

Proof Trees

» To show the effect of a program, we need to build proof trees.
» Leto = {x:=3,y :=4}.
» We want to prove that 2 X y +9 x x = 35.

Because of precedence rules, we evaluate the + last.

<2xy,0>]e8 <9xx,0 > 27
<2Xy4+9xx,0>35

ARITH

Introduction The Rules Proof Trees Conclusion

000 000000 o0 o
:

Proof Trees

» To show the effect of a program, we need to build proof trees.
» Leto = {x:=3,y :=4}.
» We want to prove that 2 X y +9 x x = 35.

We go up one more level, and then we are done.

< 2,0 > 2 ConsT <y,o0 >4 VAR <9,0>9 ConsT <x,0 >3 VAR

<2xy,0>0.8 ARITH <9xx,0 >, 27 ARITH

<2xy+9xx,0 >l 35 ARITH

Introduction The Rules Proof Trees Conclusion

000 000000 oe o
:

Statement Proof Tree

» Leto = {x:=10,y := 20}.
» Leto’ = {x:=10,y := 20,m := 20}.

Here is an example that will use all three versions of |}.

< if x >ythen m:=xelse m:=2xxfi,o >{ o’

Can you figure out what this tree should look like?

Introduction The Rules Proof Trees Conclusion

000 000000 oe o
:

Statement Proof Tree

» Leto = {x:=10,y := 20}.
» Leto’ = {x := 10,y := 20,m := 20}.

REL ASSIGN
<x>y,o >, false <m:=2xx,0>|o e
2

< if x >ythen m:=xelse m:=2x xfi,o >| o’

Introduction The Rules Proof Trees Conclusion

000 000000 oe o
:

Statement Proof Tree

» Leto = {x:=10,y := 20}.
» Leto’ = {x:=10,y := 20,m := 20}.

<x oSl 10 AR Ty osha0 VAR Ca g2 CONST LS 10 VAR
REL ASSIGN

<x>y,0>|, false <m:=2xx,0 >0
< if x> ythen m:=xelse m:=2 xxfi,o >| o

|F2

Introduction The Rules Proof Trees Conclusion

000 000000 00 (]
:

Connecting to Interpreters

» The |} is really just eval that you already know and love.

» The o is just the env parameter.

	Introduction
	Introduction

	The Rules
	The Rules

	Proof Trees
	Proofs

	Conclusion

