
Objectives Evaluation Order How Far to Evaluate For Us

Evaluation Order

Dr. Mattox Beckman

University of Illinois at Urbana-Champaign

Department of Computer Science

Objectives Evaluation Order How Far to Evaluate For Us

Objectives

I Demonstrate the difference between normal order and applicative order evaluation.

I Demonstrate the difference between normal form and weak head normal form.

Objectives Evaluation Order How Far to Evaluate For Us

Things We Didn’t Mention Last Time ...

I If there is more than one β-reduction, which one do you do first?

I Do you always have to do all β-reductions, or should some be left alone?

Objectives Evaluation Order How Far to Evaluate For Us

Applicative Order

I Applicative order is like call-by-value in many programming languages.

I Start with the left-most outer-most application.

I Evaluate the argument before doing the β-reduction.

(λxf.fx)(λz.z)((λq.q)(λr.r))



Objectives Evaluation Order How Far to Evaluate For Us

Applicative Order

I Applicative order is like call-by-value in many programming languages.

I Start with the left-most outer-most application.

I Evaluate the argument before doing the β-reduction.

(λxf.fx)(λz.z)((λq.q)(λr.r))
⇒ (λf.fλz.z)((λq.q)(λr.r))

Objectives Evaluation Order How Far to Evaluate For Us

Applicative Order

I Applicative order is like call-by-value in many programming languages.

I Start with the left-most outer-most application.

I Evaluate the argument before doing the β-reduction.

(λxf.fx)(λz.z)((λq.q)(λr.r))
⇒ (λf.fλz.z)((λq.q)(λr.r))
⇒ (λf.fλz.z)(λr.r)

Objectives Evaluation Order How Far to Evaluate For Us

Applicative Order

I Applicative order is like call-by-value in many programming languages.

I Start with the left-most outer-most application.

I Evaluate the argument before doing the β-reduction.

(λxf.fx)(λz.z)((λq.q)(λr.r))
⇒ (λf.fλz.z)((λq.q)(λr.r))
⇒ (λf.fλz.z)(λr.r)
⇒ (λr.r)(λz.z)
⇒ (λz.z)

Objectives Evaluation Order How Far to Evaluate For Us

Normal Order

I Normal order is like call-by-name, which is what the C preprocessor uses.

I Again, start with the left-most outer-most application.

I But this time do the β-reduction right away.

(λxf.fx)(λz.z)((λq.q)(λr.r))



Objectives Evaluation Order How Far to Evaluate For Us

Normal Order

I Normal order is like call-by-name, which is what the C preprocessor uses.

I Again, start with the left-most outer-most application.

I But this time do the β-reduction right away.

(λxf.fx)(λz.z)((λq.q)(λr.r))
⇒ (λf.fλz.z)((λq.q)(λr.r))

Objectives Evaluation Order How Far to Evaluate For Us

Normal Order

I Normal order is like call-by-name, which is what the C preprocessor uses.

I Again, start with the left-most outer-most application.

I But this time do the β-reduction right away.

(λxf.fx)(λz.z)((λq.q)(λr.r))
⇒ (λf.fλz.z)((λq.q)(λr.r))
⇒ ((λq.q)(λr.r))λz.z

Objectives Evaluation Order How Far to Evaluate For Us

Normal Order

I Normal order is like call-by-name, which is what the C preprocessor uses.

I Again, start with the left-most outer-most application.

I But this time do the β-reduction right away.

(λxf.fx)(λz.z)((λq.q)(λr.r))
⇒ (λf.fλz.z)((λq.q)(λr.r))
⇒ ((λq.q)(λr.r))λz.z
⇒ (λr.r)λz.z

Objectives Evaluation Order How Far to Evaluate For Us

Normal Order

I Normal order is like call-by-name, which is what the C preprocessor uses.

I Again, start with the left-most outer-most application.

I But this time do the β-reduction right away.

(λxf.fx)(λz.z)((λq.q)(λr.r))
⇒ (λf.fλz.z)((λq.q)(λr.r))
⇒ ((λq.q)(λr.r))λz.z
⇒ (λr.r)λz.z
⇒ λz.z



Objectives Evaluation Order How Far to Evaluate For Us

Interesting Effects

I Applicative order often has fewer reductions.

E.g., (λxf.fxxxx)((λa.a)(λb.b))

I Normal order can win sometimes.

E.g., (λxf.fffff)((λa.a)(λb.b))

I If it terminates, applicative order will yield the same result as normal order.

E.g., (λxf.fffff)((λa.aa)(λb.bb))

Objectives Evaluation Order How Far to Evaluate For Us

Interesting Effects

I Applicative order often has fewer reductions.

E.g., (λxf.fxxxx)((λa.a)(λb.b))

I Normal order can win sometimes.

E.g., (λxf.fffff)((λa.a)(λb.b))

I If it terminates, applicative order will yield the same result as normal order.

E.g., (λxf.fffff)((λa.aa)(λb.bb))

Objectives Evaluation Order How Far to Evaluate For Us

Interesting Effects

I Applicative order often has fewer reductions.

E.g., (λxf.fxxxx)((λa.a)(λb.b))

I Normal order can win sometimes.

E.g., (λxf.fffff)((λa.a)(λb.b))

I If it terminates, applicative order will yield the same result as normal order.

E.g., (λxf.fffff)((λa.aa)(λb.bb))

Objectives Evaluation Order How Far to Evaluate For Us

When Can We Stop?

I Consider this function definition.

I When do you expect the (\z.z) y function call to occur?

1 foo x y =
2 x + (\z . z) y



Objectives Evaluation Order How Far to Evaluate For Us

Weak Head Normal Form

I If the “head node” (root node of the syntax tree) is a lambda, then everything inside is the

body of the function.

I This is weak head normal form.

I This form more closely resembles what “real programming languages” do.

λa

@

λx

x

λy

y

λa.(λx.x)(λy.y)

Objectives Evaluation Order How Far to Evaluate For Us

Normal Form

I In normal form, once the outermost node is a lambda, you descend into the body and

continue there.

I You get maximally reduced expressions: “normalized”

I It’s possible to have α-capture though.
E.g., λy.(λxy.x)y

λa

λy

y

λa.λy.y

Objectives Evaluation Order How Far to Evaluate For Us

In Our Class

I We will tend to prefer normal form to weak head normal form.

Why? Because this better reveals the structure of the resulting evaluations.

I We will want you to know both applicative order and normal order.

Why? That difference will come up again later in the course!

We will let you know if we care which one you use.


