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Objectives

I Use lambda calculus to implement integers and booleans.

I Define some operations on Church numerals:

inc, plus, times.
I Explain how to represent boolean operations:

and, or, not, if.

I Use lambda calculus to implement arbitrary types.
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What Is a Number?

I The lambda calculus doesn’t have numbers.

I A number n can be thought of as a potential: someday we are going to do something n

times.

Some Church Numerals

1 f0 = \f-> \x-> x
2 f1 = \f-> \x-> f x
3 f2 = \f-> \x-> f (f x)
4 f3 = \f-> \x-> f (f (f x))

1 Prelude> let show m = m (+1) 0
2 Prelude> show (\f x -> f (f x))
3 2
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Incrementing Church Numerals, 0

I To increment a Church numeral, what do we want to do?

Running Example

1 finc = undefined
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Incrementing Church Numerals, 1

I To increment a Church numeral, what do we want to do?

I First step, take the Church numeral you want to increment.

Running Example

1 finc = \m -> undefined
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Incrementing Church Numerals, 2

I To increment a Church numeral, what do we want to do?

I First step, take the Church numeral you want to increment.

I Second step, return a Church numeral representing your result.

Running Example

1 finc = \m -> \f x -> undefined
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Incrementing Church Numerals, 3

I To increment a Church numeral, what do we want to do?

I First step, take the Church numeral you want to increment.

I Second step, return a Church numeral representing your result.

I Third step, apply f to x,m times.

Running Example

1 finc = \m -> \f x -> m f x
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Incrementing Church Numerals, 4

I To increment a Church numeral, what do we want to do?

I First step, take the Church numeral you want to increment.

I Second step, return a Church numeral representing your result.

I Third step, apply f to x,m times.

I Finally, apply f once more to the result.

Running Example

1 finc = \m -> \f x -> f (m f x)
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Adding Church Numerals

I Similar reasoning can yield addition and multiplication.

I Here is addition. Can you figure our multiplication? Hint: What does (nf) do?

I Subtraction is a bit more tricky.

Running Example

1 fadd m n = \f x -> m f (n f x)
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Implementing Booleans

I Church numerals represented integers as a potential number of actions.

I Church Booleans represent true and false as a choice.

T ≡ λab.a
F ≡ λab.b

1 true = \ a b -> a
2 false = \ a b -> b
3 showb f = f True False

I Type these into a REPL and try them out!

I Next slide: and and or. Try to figure it out before going ahead!
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And and Or

I There are a couple of ways to do it.

and ≡ λxy.xyF
or ≡ λxy.xTy
if ≡ λcte.cte

1 and = \x y -> x y false
2 or = \x y -> x true y
3 cif = \c t e -> c t e

Objectives Church Numerals Church Booleans Arbitrary Data

Representing Arbitrary Types

I Suppose we have an algebraic data type with n constructors.

I Then the Church representation is an abstraction that takes n parameters.

I Each parameter represents one of the constructors.

T ≡ λab.a
F ≡ λab.b
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The Maybe Type

I The Maybe type has two constructors: Just and Nothing.

1 data Maybe a = Just a
2 | Nothing

I Can you give the lambda-calculus representation for Just 3?

Just a ≡ λjn.ja
Nothing ≡ λjn.n

I Try to figure out how to represent linked lists ....
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The Maybe Type

I The Maybe type has two constructors: Just and Nothing.

1 data Maybe a = Just a
2 | Nothing

I Can you give the lambda-calculus representation for Just 3?

Just a ≡ λjn.ja
Nothing ≡ λjn.n

Just 3 ≡ λjn.jλfx.f(f(fx))

I Try to figure out how to represent linked lists ....
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Linked Lists

I A list has two constructors: Cons and Nil.

1 data List a = Cons a (List a)
2 | Nil

I Can you give the lambda-calculus representation for

Cons True (Cons False Nil)?

Cons x y ≡ λcn.cxy
Nil ≡ λcn.n

I Write a function length that determines the length of one of these lists. Assume you are

allowed to use recursion. (Note,Haskell’s type system will not let you write this.)
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Linked Lists

I A list has two constructors: Cons and Nil.

1 data List a = Cons a (List a)
2 | Nil

I Can you give the lambda-calculus representation for

Cons True (Cons False Nil)?
Cons x y ≡ λcn.cxy

Nil ≡ λcn.n

λc1n1.c1(λab.a)(λc2n2.c2(λab.b)(λc3n3.n3))
or... λcn.c(λab.a)(c(λab.b)n)

I Write a function length that determines the length of one of these lists. Assume you are

allowed to use recursion. (Note,Haskell’s type system will not let you write this.)
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Length

Cons x y ≡ λcn.cxy
Nil ≡ λcn.n

Length x = x(λxy.inc (Length y)) zero
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Higher Order Abstract Syntax

I It is possible to represent lambda-calculus in lambda calculus!

I We can let variables represent themselves.

I This is a non-recursive version:

M = λfa.[[M]]fa
[[Var x]]fa = x

[[Abs x M]]fa ≡ fλx.[[M]]fa
[[App e1 e2]]

f
a ≡ a[[e1]]

f
a[[e2]]

f
a

I You can then write an interpreter for this!

I Abstraction: λx.x
I Application: λe1e2.e1e2
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Higher Order Abstract Syntax

I It is possible to represent lambda-calculus in lambda calculus!

I We can let variables represent themselves.

I This is a non-recursive version:

M = λfa.[[M]]fa
[[Var x]]fa = x

[[Abs x M]]fa ≡ fλx.[[M]]fa
[[App e1 e2]]

f
a ≡ a[[e1]]

f
a[[e2]]

f
a

I You can then write an interpreter for this!

I Abstraction: λx.x
I Application: λe1e2.e1e2


