Church Numerals

Dr. Mattox Beckman

University of Illinois at Urbana-Champaign Department of Computer Science

・ロト・西ト・ヨト ヨー うへの

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ● のへで

Objectives

- Use lambda calculus to implement integers and booleans.
 - Define some operations on Church numerals: inc, plus, times.
 - Explain how to represent boolean operations: and, or, not, if.
- Use lambda calculus to implement arbitrary types.

Objectives	Church Numerals	Church Booleans	Arbitrary Data
0	000000	00	00000

What Is a Number?

- The lambda calculus doesn't have numbers.
- A number n can be thought of as a potential: someday we are going to do something n times.

Some Church Numerals

 $1 f0 = \langle f-> \langle x-> x \rangle$ $2 f1 = \langle f-> \langle x-> f x \rangle$ $3 f2 = \langle f-> \langle x-> f (f x) \rangle$ $4 f3 = \langle f-> \langle x-> f (f (f x)) \rangle$

Prelude> let show m = m (+1) 0
2 Prelude> show (\f x -> f (f x))
3 2

Objectives	Church Numerals	Church Booleans	Arbitrary Data
0	000000	00	00000

▲□▶▲□▶▲□▶▲□▶ ■ のへで

Incrementing Church Numerals, 0

To increment a Church numeral, what do we want to do?

Running Example

ifinc = undefined

Incrementing Church Numerals, 1

- To increment a Church numeral, what do we want to do?
- First step, take the Church numeral you want to increment.

Running Example

 $finc = \ \ -> undefined$

Incrementing Church Numerals, 2

- To increment a Church numeral, what do we want to do?
- First step, take the Church numeral you want to increment.
- Second step, *return* a Church numeral representing your result.

Running Example

 $finc = \ \ -> \ f x -> undefined$

Incrementing Church Numerals, 3

- To increment a Church numeral, what do we want to do?
- First step, take the Church numeral you want to increment.
- Second step, *return* a Church numeral representing your result.
- ► Third step, apply *f* to *x*, *m* times.

Running Example

 $finc = \ -> \ f x -> m f x$

Incrementing Church Numerals, 4

- > To increment a Church numeral, what do we want to do?
- First step, take the Church numeral you want to increment.
- Second step, *return* a Church numeral representing your result.
- ► Third step, apply *f* to *x*, *m* times.
- Finally, apply *f* once more to the result.

Running Example

 $finc = \ -> \ f x -> f (m f x)$

Objectives	Church Numerals	Church Booleans	Arbitrary Data
0	000000	00	00000

Adding Church Numerals

- Similar reasoning can yield addition and multiplication.
- ► Here is addition. Can you figure our multiplication? Hint: What does (*nf*) do?

▲□▶▲□▶▲□▶▲□▶ ■ のへで

Subtraction is a bit more tricky.

Running Example

 $fadd m n = \langle f x \rightarrow m f (n f x) \rangle$

Objectives	Church Numerals	Church Booleans	Arbitrary Data
O	0000000	●O	00000
			1

Implementing Booleans

- Church numerals represented integers as a potential number of actions.
- Church Booleans represent true and false as a choice.

$$T \equiv \lambda a b.a$$

 $F \equiv \lambda a b.b$

1 true = \ a b -> a
2 false = \ a b -> b
3 showb f = f True False

- Type these into a REPL and try them out!
- Next slide: and and or. Try to figure it out before going ahead!

Objectives	Church Numerals	Church Booleans	Arbitrary Data
0	000000	00	00000

And and Or

• There are a couple of ways to do it.

and
$$\equiv \lambda xy.xyF$$

or $\equiv \lambda xy.xTy$
if $\equiv \lambda cte.cte$

▲□▶▲圖▶▲圖▶▲圖▶ 圖 のへで

and =
$$\langle x y \rangle x y$$
 false
2 or = $\langle x y \rangle x$ true y
3 cif = $\langle c t e \rangle c t e$

Objectives	Church Numerals	Church Booleans	Arbitrary Data
0	000000	00	00000

Representing Arbitrary Types

- Suppose we have an algebraic data type with *n* constructors.
- Then the Church representation is an abstraction that takes *n* parameters.
- Each parameter represents one of the constructors.

 $T\equiv \lambda ab.a$ $F\equiv \lambda ab.b$

Objectives O	Church Numerals 0000000	Church Booleans 00	Arbitrary Data 0●000

The Maybe Type

► The Maybe type has two constructors: Just and Nothing.

• Can you give the lambda-calculus representation for Just 3?

```
Just a \equiv \lambda jn.ja
Nothing \equiv \lambda jn.n
```

Objectives O	Church Numerals 0000000	Church Booleans 00	Arbitrary Data 0●000

The Maybe Type

The Maybe type has two constructors: Just and Nothing.

Can you give the lambda-calculus representation for Just 3?

Just $a \equiv \lambda jn.ja$ Nothing $\equiv \lambda jn.n$

Just $3 \equiv \lambda jn.j\lambda fx.f(f(fx))$

▲□▶▲□▶▲□▶▲□▶ ■ のへで

Try to figure out how to represent linked lists

Objectives O	Church Numerals 0000000	Church Booleans	Arbitrary Data 00●00

Linked Lists

► A list has two constructors: Cons and Nil.

```
1 data List a = Cons a (List a)
2 | Nil
```

Can you give the lambda-calculus representation for Cons True (Cons False Nil)?

 $\begin{array}{rcl} {\it Cons \ x \ y \equiv & \lambda cn.cxy} \\ {\it Nil \equiv & \lambda cn.n} \end{array}$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ● のへで

Objectives	Church Numerals	Church Booleans	Arbitrary Data
O	0000000	00	00●00

Linked Lists

► A list has two constructors: Cons and Nil.

```
1 data List a = Cons a (List a)
2 | Nil
```

Can you give the lambda-calculus representation for Cons True (Cons False Nil)?

```
\begin{array}{rcl} {\it Cons \ x \ y} \equiv & \lambda {\it cn.cxy} \\ {\it Nil} \equiv & \lambda {\it cn.n} \end{array}
```

 $\begin{array}{l} \lambda c_1 n_1.c_1(\lambda a b.a)(\lambda c_2 n_2.c_2(\lambda a b.b)(\lambda c_3 n_3.n_3))\\ or... \quad \lambda cn.c(\lambda a b.a)(c(\lambda a b.b)n) \end{array}$

Write a function length that determines the length of one of these lists. Assume you are allowed to use recursion. (Note, HASKELL's type system will not let you write this.)

Objectives	Church Numerals	Church Booleans	Arbitrary Data
O	0000000	00	000●0

Length

$$\begin{array}{rcl} {\it Cons \, x \, y \equiv } & \lambda {\it cn.cxy} \\ {\it Nil \equiv } & \lambda {\it cn.n} \end{array}$$

Length
$$x = x(\lambda xy.inc (Length y))$$
 zero

・ロト・西・・山・・日・ 日・ シック

Objectives	Church Numerals	Church Booleans	Arbitrary Data
0	0000000	00	00000

Higher Order Abstract Syntax

- It is possible to represent lambda-calculus in lambda calculus!
- We can let variables represent themselves.
- ► This is a non-recursive version:

$$M = \lambda fa. \llbracket M \rrbracket_a^f$$
$$\llbracket Var x \rrbracket_a^f = x$$
$$\llbracket Abs x M \rrbracket_a^f \equiv f\lambda x. \llbracket M \rrbracket_a^f$$
$$\llbracket App \ e_1 \ e_2 \rrbracket_a^f \equiv a \llbracket e_1 \rrbracket_a^f \llbracket e_2 \rrbracket_a^f$$

▲□▶▲@▶▲≧▶▲≧▶ 差 のへぐ

> You can then write an interpreter for this!

Objectives	Church Numerals	Church Booleans	Arbitrary Data
0	0000000	00	00000

Higher Order Abstract Syntax

- It is possible to represent lambda-calculus in lambda calculus!
- We can let variables represent themselves.
- ► This is a non-recursive version:

$$M = \lambda fa. \llbracket M \rrbracket_a^f$$
$$\llbracket Var x \rrbracket_a^f = x$$
$$\llbracket Abs x M \rrbracket_a^f \equiv f\lambda x. \llbracket M \rrbracket_a^f$$
$$\llbracket App \ e_1 \ e_2 \rrbracket_a^f \equiv a \llbracket e_1 \rrbracket_a^f \llbracket e_2 \rrbracket_a^f$$

- You can then write an interpreter for this!
 - Abstraction: λx.x
 - Application: $\lambda e_1 e_2 . e_1 e_2$