

Objectives O	To Infinity and Beyond 000000●	Further Reading O	Objectives O	To Infinity and Beyond 000000	Further Reading
Example			Further Reading		
$1 \frac{fact n}{1} = \frac{1}{1}$	then 1				
3	else n * (fact (n-1))				
In λ -calculus:				loulus to represent itself using these techniques. Ye	u alkaadu baya

$$\begin{split} \lambda f. \lambda n. \\ & \text{if } n < 1 \text{ then } 1 \\ & \text{else } n * (f (n-1)) \end{split}$$

Then we have:

$$\lambda n.$$

 $Y \text{ fact } \rightarrow \quad \text{if } n < 1 \text{ then } 1$
 $\text{else } n * ((Y \text{ fact}) (n - 1))$

▲□▶▲□▶▲□▶▲□▶ □ ● ●

You can use λ-calculus to represent itself using these techniques. You already have everything you need to do it. You can see the details in Torben Æ. Mogensen's paper, "Efficient Self-Interpretations in Lambda Calculus," in the Journal of Functional Programming v2 n3.

▲□▶▲舂▶★≧▶★≧▶ ≧ のへで