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Objectives

I Use self-application to allow functions to call themselves – even when they don’t have

names.

I Develop a general combinator Y to implement recursion.
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Recursion

Suppose we want to implement

f n = f (n+1)
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Step 1

The outline of the function would look like

λn.(f (inc n))

But, how does f get to know itself?
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Step 2

Maybe we can tell f by having it take its own name as a parameter.

λf.λn.(f (inc n))

So then we pass a copy of f to itself ...

(λf.λn.(f (inc n))) (λf.λn.(f (inc n)))

But now fmust pass itself into itself ... so we have

(λf.λn.((f f) (inc n))) (λf.λn.((f f) (inc n)))
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Expanding a Church Numeral

I Consider how this is similar to the operation of Church numerals.

((f5 f) x)
→ (f ((f4 f) x))
→ (f (f ((f3 f) x)))
→ (f (f (f ((f2 f) x))))
→ (f (f (f (f (f x)))))

So ...

((fn f) x) → (f ((fn−1 f) x))

What would it look like to have an f∞?
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The Y-Combinator

Consider this pattern:

(f∞ f) x → f (f∞ f) x

I What can you tell about f? About f∞?

I Definition: combinator = higher order function that produces its result only though

function application.

I The problem with the above function is that there’s no way out. How can we stop the

function when we are done?
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Coding the Y-Combinator

(Y f) → f (Y f)

So...

Y = λf.(λy.f (y y)) λy.f (y y))

The function fmust take (Y f) as an argument.

(Y F) = (λf.(λy.f (y y)) λy.f (y y)) F
= (λy.F (y y)) λy.F (y y)
= F ((λy.F (y y))λy.F (y y))
= F (Y F)
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Example

1 fact n =
2 if n < 1 then 1
3 else n * (fact (n-1))

In λ-calculus:

λf.λn.
if n < 1 then 1

else n ∗ (f (n− 1))

Then we have:

Y fact →
λn.

if n < 1 then 1
else n ∗ ((Y fact) (n− 1))
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Further Reading

I You can use λ-calculus to represent itself using these techniques. You already have
everything you need to do it. You can see the details in Torben Æ. Mogensen’s paper,

“Efficient Self-Interpretations in Lambda Calculus,” in the Journal of Functional

Programming v2 n3.


