
Objectives To Infinity and Beyond Further Reading

The Y-Combinator

Dr. Mattox Beckman

University of Illinois at Urbana-Champaign

Department of Computer Science

Objectives To Infinity and Beyond Further Reading

Objectives

I Use self-application to allow functions to call themselves – even when they don’t have

names.

I Develop a general combinator Y to implement recursion.

Objectives To Infinity and Beyond Further Reading

Recursion

Suppose we want to implement

f n = f (n+1)

Objectives To Infinity and Beyond Further Reading

Step 1

The outline of the function would look like

λn.(f (inc n))

But, how does f get to know itself?



Objectives To Infinity and Beyond Further Reading

Step 2

Maybe we can tell f by having it take its own name as a parameter.

λf.λn.(f (inc n))

So then we pass a copy of f to itself ...

(λf.λn.(f (inc n))) (λf.λn.(f (inc n)))

But now fmust pass itself into itself ... so we have

(λf.λn.((f f) (inc n))) (λf.λn.((f f) (inc n)))

Objectives To Infinity and Beyond Further Reading

Expanding a Church Numeral

I Consider how this is similar to the operation of Church numerals.

((f5 f) x)
→ (f ((f4 f) x))
→ (f (f ((f3 f) x)))
→ (f (f (f ((f2 f) x))))
→ (f (f (f (f (f x)))))

So ...

((fn f) x) → (f ((fn−1 f) x))

What would it look like to have an f∞?

Objectives To Infinity and Beyond Further Reading

The Y-Combinator

Consider this pattern:

(f∞ f) x → f (f∞ f) x

I What can you tell about f? About f∞?

I Definition: combinator = higher order function that produces its result only though

function application.

I The problem with the above function is that there’s no way out. How can we stop the

function when we are done?

Objectives To Infinity and Beyond Further Reading

Coding the Y-Combinator

(Y f) → f (Y f)

So...

Y = λf.(λy.f (y y)) λy.f (y y))

The function fmust take (Y f) as an argument.

(Y F) = (λf.(λy.f (y y)) λy.f (y y)) F
= (λy.F (y y)) λy.F (y y)
= F ((λy.F (y y))λy.F (y y))
= F (Y F)



Objectives To Infinity and Beyond Further Reading

Example

1 fact n =
2 if n < 1 then 1
3 else n * (fact (n-1))

In λ-calculus:

λf.λn.
if n < 1 then 1

else n ∗ (f (n− 1))

Then we have:

Y fact →
λn.

if n < 1 then 1
else n ∗ ((Y fact) (n− 1))

Objectives To Infinity and Beyond Further Reading

Further Reading

I You can use λ-calculus to represent itself using these techniques. You already have
everything you need to do it. You can see the details in Torben Æ. Mogensen’s paper,

“Efficient Self-Interpretations in Lambda Calculus,” in the Journal of Functional

Programming v2 n3.


