The Y-Combinator

Dr. Mattox Beckman

University of Illinois at Urbana-Champaign Department of Computer Science

Objectives

- Use self-application to allow functions to call themselves even when they don't have names.
- Develop a general combinator Y to implement recursion.

Objectives	To Infinity and Beyond	Further Reading
0	●000000	0

<□> <0</p>

Recursion

Suppose we want to implement

f n = f (n+1)

Step 1

The outline of the function would look like

 $\lambda n.(f(inc n))$

But, how does f get to know itself?

Objectives	To Infinity and Beyond	Further Reading
O	○○●○○○○	O

Step 2

Maybe we can tell *f* by having it take its own name as a parameter.

 $\lambda f.\lambda n.(f(inc n))$

So then we pass a copy of *f* to itself ...

 $(\lambda f.\lambda n.(f(inc n)))(\lambda f.\lambda n.(f(inc n)))$

But now *f* must pass itself into itself ... so we have

 $(\lambda f.\lambda n.((f f) (inc n))) (\lambda f.\lambda n.((f f) (inc n)))$

Expanding a Church Numeral

• Consider how this is similar to the operation of Church numerals.

$$\begin{array}{l} ((f_5 f) x) \\ \rightarrow \ (f \ ((f_4 \ f) \ x))) \\ \rightarrow \ (f \ (f \ ((f_3 \ f) \ x)))) \\ \rightarrow \ (f \ (f \ ((f_2 \ f) \ x)))) \\ \rightarrow \ (f \ (f \ (f \ (f_2 \ f) \ x)))) \end{array}$$

So ...

$$((f_n f) x) \rightarrow (f ((f_{n-1} f) x))$$

What would it look like to have an f_{∞} ?

The Y-Combinator

Consider this pattern:

$$(f_{\infty} f) x \rightarrow f(f_{\infty} f) x$$

- What can you tell about *f*? About f_{∞} ?
- Definition: combinator = higher order function that produces its result only though function application.
- The problem with the above function is that there's no way out. How can we stop the function when we are done?

Coding the Y-Combinator

$$(Yf) \rightarrow f(Yf)$$

So...

$$Y = \lambda f.(\lambda y.f(y y)) \lambda y.f(y y))$$

The function f must take (Y f) as an argument.

$$\begin{array}{ll} (YF) &= (\lambda f.(\lambda y.f(yy)) \ \lambda y.f(yy)) \ F \\ &= (\lambda y.F(yy)) \ \lambda y.F(yy) \\ &= F((\lambda y.F(yy)) \lambda y.F(yy)) \\ &= F(YF) \end{array}$$

Objectives O	To Infinity and Beyond ○○○○○○●	Further Reading O
Example		
1 fact n = $2 if n < 1 then 1$ $3 else n * ($	fact (n-1))	
In λ -calculus:		
	$egin{aligned} \lambda f. \lambda n. \ & ext{if } n < 1 ext{ then } 1 \ & ext{else } n * (f \ (n-1)) \end{aligned}$	

Then we have:

Further Reading

You can use λ-calculus to represent itself using these techniques. You already have everything you need to do it. You can see the details in Torben Æ. Mogensen's paper, "Efficient Self-Interpretations in Lambda Calculus," in the *Journal of Functional Programming* v2 n3.