
Introduction Defining Continuations A Motivating Example Further Reading

Continuations

Dr. Mattox Beckman

University of Illinois at Urbana-Champaign

Department of Computer Science

Introduction Defining Continuations A Motivating Example Further Reading

Objectives
You should be able to ...

It is possible to use functions to represent the control flow of a program. This technique is

called continuation passing style. After today’s lecture, you should be able to

I Explain what CPS is.

I Give an example of a programming technique using CPS.

I Write a recursive function using CPS.

Introduction Defining Continuations A Motivating Example Further Reading

Direct Style

Example Code

1 inc x = x + 1
2 double x = x * 2
3 half x = x `div` 2
4

5 result = inc (double (half 10))

I Consider the function call above. What is happening?

Introduction Defining Continuations A Motivating Example Further Reading

The Continuation

1 result = inc (double (half 10))

I We can ‘punch out’ a subexpression to create an expression with a ‘hole’ in it.

result = inc (double [[]])
I This is called a context. After half 10 runs, its result will be put into this context.

I We can call this context a continuation.



Introduction Defining Continuations A Motivating Example Further Reading

Making Continuations Explicit

I We can make continuations explicit in our code.

1 cont = \ v -> inc (double v)
I Instead of returning, a function can take a continuation argument.

Using a Continuation

1 half x k = k (x `div` 2)
2 result = half 10 cont

I Convince yourself that this does the same thing as the original code.

Introduction Defining Continuations A Motivating Example Further Reading

Properties of CPS

I A function is in Direct Style when it returns its result back to the caller.

I A Tail Call occurs when a function returns the result of another function call without
processing it first.

I This is what is used in accumulator recursion.

I A function is in Continuation Passing Style when it passes its result to another function.

I Instead of returning the result to the caller, we pass it forward to another function.
I Functions in CPS “never return.”

I Let’s see some more examples.

Introduction Defining Continuations A Motivating Example Further Reading

Comparisons

Direct Style

1 inc x = x + 1
2 double x = x * 2
3 half x = x `div` 2
4

5 result = inc (double (half 10))

CPS

1 inc x k = k (x + 1)
2 double x k = k (x * 2)
3 half x k = k (x `div` 2)
4 id x = x
5 result = half 10 (\v1 ->
6 double v1 (\v2 ->
7 inc v2 id))

Introduction Defining Continuations A Motivating Example Further Reading

CPS and Imperative Style

I CPS look like imperative style if you do it right.

CPS

1 result = half 10 (\v1 ->
2 double v1 (\v2 ->
3 inc v2 id))

Imperative Style

1 v1 := half 10
2 v2 := double v1
3 result := inc v2



Introduction Defining Continuations A Motivating Example Further Reading

The GCD Program

1 gcd a b | b == 0 = a
2 | a < b = gcd b a
3 | otherwise = gcd b (a `mod` b)

gcd 44 12 ⇒ gcd 12 8 ⇒ gcd 8 4 ⇒ gcd 4 0 ⇒ 4

I The running time of this function is roughlyO(lg a).

Introduction Defining Continuations A Motivating Example Further Reading

GCD of a List

1 gcdstar [] = 0
2 gcdstar (x:xs) = gcd x (gcdstar xx)
3

4 > gcdstar [44, 12, 80, 6]
5 2
6 > gcdstar [44, 12]
7 4

I Question: What will happen if there is a 1 near the beginning of the sequence?

I We can use a continuation to handle this case.

Introduction Defining Continuations A Motivating Example Further Reading

Continuation Solution

1 gcdstar xx k = aux xx k
2 where aux [] newk = newk 0
3 aux (1:xs) newk = k 1
4 aux (x:xs) newk = aux xs (\res -> newk (gcd x res))
5

6 > gcdstar [44, 12, 80, 6] report
7 2
8 > gcdstar [44, 12, 1, 80, 6] report
9 1

Introduction Defining Continuations A Motivating Example Further Reading

Other Topics

I Continuations can simulate exceptions.

I They can also simulate cooperative multitasking.

I These are called co-routintes.

I Some advanced routines are also available: call/cc, shift, reset.


