Introduction
o

Defining Continuations
000000

000

A Motivating Example

Further Reading
[}

Continuations

Dr. Mattox Beckman

UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN
DEPARTMENT OF COMPUTER SCIENCE

Introduction Defining Continuations A Motivating Example Further Reading

[000000 000 [©]
:

Objectives

You should be able to ...

It is possible to use functions to represent the control flow of a program. This technique is
called continuation passing style. After today’s lecture, you should be able to

» Explain what CPS is.

» Give an example of a programming technique using CPS.

» Write a recursive function using CPS.

Introduction Defining Continuations A Motivating Example Further Reading

[©] ®00000 000 [©]
:

Direct Style

Example Code

1inc x = x + 1
2double x = x * 2
shalf x x ~div™ 2

4

sresult inc (double (half 10))

» Consider the function call above. What is happening?

Introduction Defining Continuations A Motivating Example Further Reading

[©] O®0000 000 [©]
:

The Continuation

1result = inc (double (half 10))

» We can ‘punch out’ a subexpression to create an expression with a ‘hole’ in it.
result = inc (double [])

» This is called a context. After half 10 runs, its result will be put into this context.

» We can call this context a continuation.

Introduction Defining Continuations A Motivating Example Further Reading

[©] 00@000 000 [©]
:

Making Continuations Explicit

» We can make continuations explicit in our code.
1cont = \ v -> inc (double v)

» Instead of returning, a function can take a continuation argument.
Using a Continuation

1half x k = k (x ~div" 2)
2result = half 10 cont

» Convince yourself that this does the same thing as the original code.

Introduction Defining Continuations A Motivating Example Further Reading

[©] 000@e00 000 [©]
:

Properties of CPS

v

A function is in Direct Style when it returns its result back fo the caller.

v

A Tail Call occurs when a function returns the result of another function call without
processing if first.

» This is what is used in accumulator recursion.

v

A function is in Continuation Passing Style when it passes its result to another function.

» Instead of returning the result to the caller, we pass it forward to another function.
» Functions in CPS “never return.”

v

Let’s see some more examples.

Introduction Defining Continuations A Motivating Example Further Reading
[} [e]e]e]e] Te} 000 [}
:

Comparisons

CPS
Direct Style 1inc x k = k (x + 1)
1inc x = x + 1 2double x k = k (x * 2)
bdouble X = x * 2 shalf x k = k¥ (x ~div> 2)
shalf x = x “div™ 2 4id x = x
4 sresult = half 10 (\vl ->
sresult = inc (double (half 10)) 6 double vi (\v2 ->

7 inc v2 id))

Introduction Defining Continuations A Motivating Example

Further Reading
[} O0000e 000

[©]
:

CPS and Imperative Style

» CPS look like imperative style if you do if right.

CPS Imperative Style
iresult = half 10 (\vl ->] vl := half 10

2 double vi (\v2 -> 2 v2 := double vi
3 inc v2 id)) sresult := inc v2

Introduction Defining Continuations A Motivating Example Further Reading
[} 000000 [Je]e} [}

The GCD Program

1gcdab | b==0-=a
| a<b =gcdba

2
| otherwise = gcd b (a "mod”™ b)

3

ged 44 12=gcd 12 8=gcd 8 4=gcd 4 0=4
» The running time of this function is roughly O(lg a).

Introduction Defining Continuations A Motivating Example Further Reading
[} 000000 (o] le} [}

GCD of a List

1gedstar [1 = 0

2gcdstar (x:xs) = gcd x (gedstar xx)
3

4> gcdstar [44, 12, 80, 6]

52

¢> gcdstar [44, 12]

74

> Question: What will happen if there is a T near the beginning of the sequence?

» We can use a continuation to handle this case.

Introduction Defining Continuations A Motivating Example Further Reading

[©] 000000 ooe [©]
:

Continuation Solution

1gedstar xx k = aux xx k

> where aux [] newk = newk 0

3 aux (1:xs) newk = k 1

4 aux (x:xs) newk = aux xs (\res -> newk (gcd x res))
5

¢> gcdstar [44, 12, 80, 6] report

72

s> gcdstar [44, 12, 1, 80, 6] report

91

Introduction Defining Continuations A Motivating Example Further Reading
[J

[©] 000000 000
: :

Other Topics

» Continuations can simulate exceptions.
» They can also simulate cooperative multitasking.

» These are called co-routintes.

» Some advanced routines are also available: call/cc, shift, reset.

	Introduction
	Objectives

	Defining Continuations
	A Motivating Example
	Further Reading

