
Objectives Functors Applicative

Functor and Applicative

Dr. Mattox Beckman

University of Illinois at Urbana-Champaign

Department of Computer Science

Objectives Functors Applicative

Objectives

I Implement the Functor and Applicative type classes for a user-defined type.

I Use the Functor and Applicative type classes to generalize the map function.

Objectives Functors Applicative

Motivation

Example Types

1 data Tree a = Node a [Tree a]
2 data Maybe a = Just a | Nothing

I Suppose we want to write the map function for these types. What will they look like?

Objectives Functors Applicative

The Functor Typeclass

The Functor Typeclass

1 class Functor f where
2 fmap :: (a -> b) -> f a -> f b

I You can use this to define a map for many different types.

I The f type you pass in must be a parameterized type.

Examples

1 instance Functor Maybe where
2 fmap f (Just x) = Just (f x)
3 fmap _ Nothing = Nothing
4 instance Functor [] where
5 fmap f [] = []
6 fmap f (x:xs) = f x : fmap f xs

Objectives Functors Applicative

Why This is Useful

I If you define a type and declare it to be a Functor, then other people can use fmap on it.
I You can also write functions that use fmap that can accept any Functor type.

Using Functor

1 Main> let incAnything x = fmap (+1) x
2 Main> incAnything [10,20]
3 [11,21]
4 Main> incAnything (Just 30)
5 Just 31
6 Main> incAnything (Foo 30)
7 Foo 31

Objectives Functors Applicative

Applicative Functors

I We can take this up one level.

The Applicative Typeclass

1 class (Functor f) => Applicative f where
2 pure a :: a -> f a
3 f (a - > b) <*> f a :: f b

I The <*> operator ‘lifts’ function applications.

Objectives Functors Applicative

Declaring Our Own Applicative

Complete Foo

1 import Control.Applicative
2

3 data Foo a = Foo a
4

5 instance Show a => Show (Foo a) where
6 show (Foo a) = "Foo " ++ show a
7

8 instance Functor Foo where
9 fmap f (Foo a) = Foo $ f a

10

11 instance Applicative Foo where
12 pure a = Foo a
13 (Foo f) <*> (Foo x) = Foo $ f x

Objectives Functors Applicative

Sample Run

1 Main> let inc = (+1)
2 Main> fmap inc (Foo 30) -- fmap works
3 Foo 31
4 Main> inc <$> (Foo 30) --- synonym for fmap
5 Foo 31
6 Main> Foo inc <*> Foo 20 -- (Foo f) <*> (Foo a) = (Foo (f a))
7 Foo 21
8 Main> let plus a b = a + b
9 Main> :t plus <$> (Foo 20)

10 plus <$> (Foo 20) :: Num a => Foo (a -> a)

I Do you remember the type of <*>?

Objectives Functors Applicative

Applicatives

1 Main> let plus a b = a + b
2 Main> :t plus <$> (Foo 20)
3 plus <$> (Foo 20) :: Num a => Foo (a -> a)
4 Main> plus <$> (Foo 20) <*> (Foo 30)
5 Foo 50

I Note that plus did not have to know about Foo.
I Note also that Foo did not have to know about Applicative.
I If we can define pure and <*> and fmap for it, we can use this trick.

Objectives Functors Applicative

Details

I There are some laws that applicatives are supposed to obey.

Identity pure id <*> v = v
Composition pure (.) <*> u <*> v <*> w = u <*> (v <*> w)
Homomorphism pure f <*> pure x = pure (f x)
Interchange u <*> pure y = pure ($ y) <*> u

I Haskell does not enforce these.

Objectives Functors Applicative

Credit

I Many of the examples were stolen off the Haskell Wikibooks page.

