Objectives Functors Applicative

00 00 000000
: :

Functor and Applicative

Dr. Mattox Beckman

UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN
DEPARTMENT OF COMPUTER SCIENCE

Objectives Functors Applicative

[18} 00 000000
: :

Objectives

» Implement the Functor and Applicative type classes for a user-defined type.

» Use the Functor and Applicative type classes to generalize the map function.

Objectives Functors Applicative

oe 00 000000
: :

Motivation

Example Types

1data Tree a = Node a [Tree a]
>data Maybe a = Just a | Nothing

» Suppose we want to write the map function for these types. What will they look like?

Objectives Functors Applicative

00 o0 000000
: :

The Functor Typeclass
The Functor Typeclass

1class Functor f where
> fmap :: (@ ->b) >fa->fb

» You can use this to define a map for many different types.
» The £ type you pass in must be a parameterized type.

Examples

1instance Functor Maybe where

> fmap £ (Just x) = Just (f x)

3 fmap _ Nothing = Nothing
sinstance Functor [] where

s fmap £ [1 = []

¢ fmap f (x:xs) = f x : fmap f xs

Objectives
Q0

Functfors

Applicative
oe

000000
:

Why This is Useful

» If you define a type and declare it to be a Functor, then other people can use fmap on it.

» You can also write functions that use fmap that can accept any Functor type.

Using Functor

1Main> let incAnything x = fmap (+1) x
2Main> incAnything [10,20]

3[11,21]

4Main> incAnything (Just 30)

sJust 31

¢Main> incAnything (Foo 30)

7Foo 31

Objectives Functors Applicative

00 00 ®00000
: :

Applicative Functors

» We can take this up one level.

The Applicative Typeclass

1class (Functor f) => Applicative f where
2 pure a :: a => f a
3 f (a->b)<¥>fa:: fhb

» The <x> operator ‘lifts’ function applications.

Objectives Functors Applicative
00

00 O®0000
:

Declaring Our Own Applicative

Complete Foo

1import Control.Applicative

2

sdata Foo a = Foo a

4

sinstance Show a => Show (Foo a) where
¢ show (Foo a) = "Foo " ++ show a
7

sinstance Functor Foo where

o fmap f (Foo a) = Foo $ f a

10

ninstance Applicative Foo where

12 pure a = Foo a

13 (Foo f) <*> (Foo x) = Foo $ f x

Objectives

Functors Applicative
00

[ele] 00®000
:

Sample Run

1Main> let inc = (+1)

2Main> fmap inc (Foo 30) -- fmap works

3Foo 31

4Main> inc <$> (Foo 30) --- synonym for fmap

sFoo 31

¢Main> Foo inc <*> Foo 20 -- (Foo f) <#*> (Foo a) = (Foo (f a))
7Foo 21

gMain> let plus a b =a + b
9oMain> :t plus <$> (Foo 20)
oplus <$> (Foo 20) :: Num a => Foo (a -> a)

» Do you remember the type of <x>?

Objectives Functors Applicative
000800

00 00
:

Applicatives

1Main> let plus ab=a +b

2Main> :t plus <$> (Foo 20)

splus <$> (Foo 20) :: Num a => Foo (a -> a)
4+Main> plus <$> (Foo 20) <*> (Foo 30)

sFoo 50

» Note that plus did not have to know about Foo.
» Note also that Foo did not have to know about Applicative.
> If we can define pure and <*> and £map for it, we can use this trick.

Objectives Functors Applicative

00 00 O000e0
: :

Details

» There are some laws that applicatives are supposed to obey.
[denfity pure id <*> v = v
Composition pure (.) <*> u <*> v <x> w = u <*> (v <*> w)
Homomorphism pure f <*> pure x = pure (f x)
Interchange u <*> pure y = pure ($ y) <*> u

» Haskell does not enforce these.

Objectives Functors Applicative

00 00 000000
: :

Credit

» Many of the examples were stolen off the Haskell Wikibooks page.

	Objectives
	Functors
	Applicative

