
Objectives Monads Other Monads

Monads

Dr. Mattox Beckman

University of Illinois at Urbana-Champaign

Department of Computer Science

Objectives Monads Other Monads

Objectives

I Describe the problem that monads attempt to solve.

I Know the three monad laws.

I Know the syntax for declaring monadic operations.

I Be able to give examples using the Maybe and List monads.

Objectives Monads Other Monads

Introducing Monads

I Monads are a way of defining computation.

I Amonad is a container typem along with two functions:

I return :: a -> m a
I bind :: m a -> (a -> m b) -> m b
I InHaskell, bind is written as >>=

I These functions must obey three laws:

Left identity return a >>= f is the same as f a.
Right identity m >>= return is the same as m.
Associativity (m >>= f) >>= g is the same as m >>= (\x -> f x >>= g).

Objectives Monads Other Monads

Understanding Return

I return :: a -> m a
I The return keyword takes an element and puts it into a monad.

I This is a one-way trip!

I Very much like pure in the applicative type class.

1 instance Monad Maybe where
2 return a = Just a
3 instance Monad [] where
4 return a = [a]
5 instance Monad (Either a) where
6 return a = Right a

Objectives Monads Other Monads

Understanding Bind

I All the magic happens in bind.

I bind :: m a -> (a -> m b) -> m b
I The first argument is a monad.
I The second argument takes a monad, unpacks it, and repackages it with the help of the

function argument.

I Exactly how it does that is the magic part.

Bind for Maybe

1 Nothing >>= f = Nothing
2 (Just a) >>= f = f a
3 -- Remember that f returns a monad

Objectives Monads Other Monads

Motivation

I They are similar to continuations, but even more powerful.

I They are also related to the applicative functors from last time.

I Consider this program:

1 inc1 a = a + 1
2 r1 = inc1 <$> Just 10 -- result: Just 11
3 r2 = inc1 <$> Nothing -- result: Nothing

But what if we have functions like this?

1 inc2 a = Just (a+1)
2 recip a | a =/ 0 = Just (1/a)
3 | otherwise = Nothing

How can we pass a Nothing to it? How can we use what we get from it?

Objectives Monads Other Monads

Notice the Pattern

I Applicatives take the values out of the parameters, run them through a function, and then

repackage the result for us.

I The functions have no control: the applicative makes all the decisions.

I Monads let the functions themselves decide what should happen.

Objectives Monads Other Monads

A Calculator, with Monads

1 minc x = x >>= (\xx -> return (xx + 1))
2 madd a b = a >>= (\aa ->
3 b >>= (\bb -> return (aa+bb)))
4 -- but wait!!!

I Okay, the above code works, but here’s a better way.

I First define functions lift to convert a function to monadic form for us!

These are part of Control.Monad:

1 liftM f a = a >>= (\aa -> return (f aa))
2 liftM2 f a b = a >>= (\aa ->
3 b >>= (\bb -> return (f aa bb)))

Objectives Monads Other Monads

Continued

Lifting

1 minc = liftM inc
2 madd = liftM2 add
3 msub = liftM2 sub
4 mdiv a b = a >>= (\aa ->
5 b >>= (\bb ->
6 if bb == 0 then fail "/0"
7 else return (aa `div` bb)))

I fail is another useful monadic function, defined in the MonadFail typeclass.

I Here it’s defined as Nothing.

Objectives Monads Other Monads

The Maybe Monad

I Here is the complete monad definition for Maybe.

Maybe Monad

1 instance Monad Maybe where
2 return = Just
3

4 (>>=) Nothing f = Nothing
5 (>>=) (Just a) f = f a
6

7 fail s = Nothing

Objectives Monads Other Monads

Example with Maybe

Prelude> minc (Just 10)
Just 11
Prelude> madd (minc (Just 10)) (Just 20)
Just 31
Prelude> mdiv (minc (Just 10)) (minc (Just 2))
Just 3
Prelude> minc (mdiv (minc (Just 10)) (minc (Just 2)))
Just 4
Prelude> minc (mdiv (minc (Just 10)) (Just 0))
Nothing

Objectives Monads Other Monads

The List Monad

I Lists can be monads too. The trick is deciding what bind should do.

List Monad

1 instance Monad [] where
2 return a = [a]
3

4 (>>=) [] f = []
5 (>>=) xs f = concatMap f xs
6

7 fail s = []

I Note that we do not have to change anything in our lifted calculator example!

Objectives Monads Other Monads

Example with List

Prelude> minc [1,2,3]
[2,3,4]
Prelude> madd [1,2,3] [10,200]
[11,201,12,202,13,203]
Prelude> minc (mdiv [10] [0])
[]
Prelude> minc (mdiv [10] [0,2,5])
[5,2]

