Objectives Monads Other Monads

[e] 000 0000
0000

Monads

Dr. Mattox Beckman

UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN
DEPARTMENT OF COMPUTER SCIENCE

Objectives Monads Other Monads

o 000 0000
0000

Objectives

» Describe the problem that monads attempt to solve.
» Know the three monad laws.
» Know the syntax for declaring monadic operations.

» Be able to give examples using the Maybe and List monads.

Objectives Monads Other Monads

[e] @00 0000
0000

Introducing Monads

» Monads are a way of defining computation.
» A monad is a container type m along with two functions:
» return :: a ->m a
» bind ::ma->(a->mb) >mb
» In HASKELL, bind is written as >>=
» These functions must obey three laws:
Left identity return a >>= fisthesameasf a.
Right idenfity m >>= return is the same as m.
Associativity (m >>=) >>= gisthesameasm >>= (\x -> f x >>= g).

Objectives Monads Other Monads

[e] oeo 0000
0000

Understanding Return

> return :: a ->m a

» The return keyword takes an element and puts it info a monad.
» This is a one-way trip!

» Very much like pure in the applicative type class.

1instance Monad Maybe where

2 return a = Just a

sinstance Monad [] where

4 return a = [a]

sinstance Monad (Either a) where
6 return a = Right a

Objectives

Monads Other Monads
o ooe 0000
0000

Understanding Bind

» All the magic happens in bind.
» bind :: ma > (a->mb) ->mb
» The first argument is a monad.

» The second argument takes a monad, unpacks it, and repackages it with the help of the
function argument.

P Exactly how it does that is the magic part.
Bind for Maybe

1Nothing >>= f = Nothing
2(Just a) >>=f =f a

3 -— Remember that f returns a monad

Monads Other Monads

Objectives
000 0000

[e]
0000
:

Motivation

» They are similar to continuations, but even more powerful.
» They are also related fo the applicative functors from last fime.

» Consider this program:

1incl a = a + 1

2rl = incl <$> Just 10 —- result: Just 11
3r2 = incl <$> Nothing -- result: Nothing

But what if we have functions like this?

1inc2 a = Just (a+1)
2recip a | a =/ 0 Just (1/2a)
3 | otherwise = Nothing

How can we pass a Nothing to it? How can we use what we get from it?

Objectives Monads Other Monads

[e] 000 0000
[e] Je]e]

Notice the Pattern

» Applicatives take the values out of the parameters, run them through a function, and then
repackage the result for us.

» The functions have no control: the applicative makes all the decisions.
P> Monads let the functions themselves decide what should happen.

Objectives Monads Other Monads

[e] 000 0000
0000

A Calculator, with Monads

iminc x = x >>= (\xx -> return (xx + 1))
omadd a b = a >>= (\aa ->
3 b >>= (\bb -> return (aa+bb)))

4

» Okay, the above code works, but here’s a befter way.

» First define functions 1ift to convert a function to monadic form for us!

These are part of Control.Monad:

11iftM £ a = a >>= (\aa -> return (f aa))
21iftM2 £ a b = a >>= (\aa —>
3 b >>= (\bb -> return (f aa bb)))

Objectives Monads Other Monads

[e] 000 0000
000e

Continued
Lifting
iminc = 1iftM inc
2madd = 1iftM2 add
smsub = 1iftM2 sub
smdiv a b = a >>= (\aa —>
5 b >>= (\bb ->
6 if bb == 0 then fail "/0"
7 else return (aa “div” bb)))

» fail is another useful monadic function, defined in the MonadFail typeclass.
» Here it's defined as Nothing

Objectives Monads

Other Monads
o

000 0000
0000

The Maybe Monad

» Here is the complete monad definition for Maybe.

Maybe Monad

1instance Monad Maybe where
2 return = Just

4 (>>=) Nothing f
5 (>>=) (Just a) f

Nothing
fa

7 fail s = Nothing

Objectives
o]

Monads

000
0000

Other Monads
0000

Example with Maybe

Prelude>
Just 11
Prelude>
Just 31
Prelude>
Just 3
Prelude>
Just 4
Prelude>
Nothing

minc

madd

mdiv

minc

minc

(Just

(minc

(minc

(mdiv

(mdiv

10)

(Just

(Just

(minc

(minc

10)) (Just 20)
10)) (minc (Just 2))
(Just 10)) (minc (Just 2)))

(Just 10)) (Just 0))

Objectives Monads Other Monads
o 000 0000
0000

The List Monad

P Lists can be monads too. The trick is deciding what bind should do.

List Monad

1instance Monad [] where
> return a = [a]

e (O>=) [1 f
5 (>>=) xs f

(]

concatMap f xs

7 fail s = []

» Note that we do not have to change anything in our lifted calculator example!

Objectives Monads Other Monads
o 000 ooo0e
0000

Example with List

Prelude> minc [1,2,3]

[2,3,4]

Prelude> madd [1,2,3] [10,200]
[11,201,12,202,13,203]

Prelude> minc (mdiv [10] [0])

(]

Prelude> minc (mdiv [10] [0,2,5])
[5,2]

	Objectives
	Monads
	Motivation

	Other Monads

