
Introduction The Type Classes The Monad

The State Monad

Dr. Mattox Beckman

University of Illinois at Urbana-Champaign

Department of Computer Science

Introduction The Type Classes The Monad

Objectives

I Describe the newtype keyword and the record type we use for representing state.

I Implement the pure operation for the state monad.

I Implement the bind operation for the state monad and trace an execution.

I Define get and put to allow direct manipulation of the stateful part of the monad.

Introduction The Type Classes The Monad

Defining the Types

I The incoming Integer is the state.

I The output tuple is a result and a state.

1 ex1 :: Integer -> (Integer, Integer)
2 ex1 s = (s * 2, s+1)
3

4 *Main> ex1 10
5 (20,11)

Introduction The Type Classes The Monad

Encapsulation

1 newtype State s a = State { runState :: s -> (a,s) }
2

3 ex2a :: State Integer Integer
4 ex2a = State { runState = ex1 }
5

6 ex2b :: State Integer Integer
7 ex2b = State ex1
8

9 *Main> runState ex2a 10
10 (20,11)
11 *Main> runState ex2b 10
12 (20,11)



Introduction The Type Classes The Monad

Functor

1 newtype State s a = State { runState :: s -> (a,s) }
2

3 ex2b :: State Integer Integer
4 ex2b = State ex1
5

6 inc x = x + 1
7

8 *Main> runState ex2a 10
9 (20,11)

10 *Main> runState (fmap inc ex2a) 10
11 (21,11)

Introduction The Type Classes The Monad

Functor Definition, 1

I Remember, Functor takes a container type.

I Think of (State s a) as a container that has values of type a in it.

I We need to define fmap.

1 newtype State s a = State { runState :: s -> (a,s) }
2

3 instance Functor (State s) where
4 fmap :: (a -> b) -> (State s a) -> (State s b)
5 fmap f g = ...

Introduction The Type Classes The Monad

Functor Definition, 2

I We need to return a State ...

1 newtype State s a = State { runState :: s -> (a,s) }
2

3 instance Functor (State s) where
4 fmap :: (a -> b) -> (State s a) -> (State s b)
5 fmap f g = State ...

Introduction The Type Classes The Monad

Functor Definition, 3

I That contains a function ...

1 newtype State s a = State { runState :: s -> (a,s) }
2

3 instance Functor (State s) where
4 fmap :: (a -> b) -> (State s a) -> (State s b)
5 fmap f g = State (\s1 -> ...



Introduction The Type Classes The Monad

Functor Definition, 4

I That contains a function ...

1 newtype State s a = State { runState :: s -> (a,s) }
2

3 instance Functor (State s) where
4 fmap :: (a -> b) -> (State s a) -> (State s b)
5 fmap f g = State (\s1 -> let (x,s2) = runState g s1
6 in (f x, s2))

Introduction The Type Classes The Monad

Applicative

I Similar reasoning gives us the Applicative functor.

1 instance Applicative (State s) where
2 pure x = State (\s -> (x,s))
3 -- (<*>) :: State s (a->b) -> State s a -> State b
4 f1 <*> x1 = State (\s -> let (f,s2) = runState f1 s
5 (x,s3) = runState x1 s2
6 in (f x,s3))

Introduction The Type Classes The Monad

The Monad

1 instance Monad (State s) w
2 return = pure
3 -- x :: State s a
4 -- f :: a -> State s b
5 -- output :: State s b
6 x >>= f = State (\s -> let (y,s2) = runState x s
7 (z,s3) = runState (f y) s2
8 in (z,s3))


