Introduction The Type Classes The Monad
o] 000000 [e]
Q0

:

The State Monad

Dr. Mattox Beckman

UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN
DEPARTMENT OF COMPUTER SCIENCE

Introduction The Type Classes The Monad
° 000000 o
00

:

Objectives

» Describe the newtype keyword and the record type we use for representing state.
» Implement the pure operation for the state monad.
» Implement the bind operation for the state monad and trace an execution.

» Define get and put to allow direct manipulation of the stateful part of the monad.

The Monad

The Type Classes
[e]

000000

Introduction

[e]
[18}

Defining the Types

» The incoming Integer is the state.
» The output tuple is a result and a state.

1exl :: Integer -> (Integer, Integer)
2exl s = (s * 2, s+1)

3

4*Main> ex1 10

5 (20,11)

Introduction The Type Classes The Monad

Encapsulation
1newtype State s a = State { runState :: s -> (a,s) }
2
3ex2a :: State Integer Integer
sex2a = State { runState = exl }

5

sex2b :: State Integer Integer
7ex2b State exl

8

9*Main> runState ex2a 10

10 (20,11)

n*Main> runState ex2b 10

12 (20,11)

u]
8
I
ul
it

Introduction The Type Classes The Monad
o ©00000 o

00

: :

Functor

State { runState :: s -> (a,s) }

1newtype State s a
2

3ex2b :: State Integer Integer
+ex2b = State exl

5

einc x = x + 1

7

g *Main> runState ex2a 10

9 (20,11)

10 *Main> runState (fmap inc ex2a) 10
n(21,11)

u]
8
I
ul
it

The Monad

The Type Classes
o

O®@0000

Introduction

[e]
00

Functor Definition, 1

» Remember, Functor takes a contfainer type.
» Think of (State s a) asa container that has values of type a in if.

> We need to define fmap.

1newtype State s a = State { runState :: s -> (a,s) }

2
3instance Functor (State s) where
4+ fmap :: (a -> b) -> (State s a) -> (State s b)

5 fmap £ g = ...

The Monad

The Type Classes
o

00e000

Introduction

[e]
00

Functor Definition, 2

» We need to return a State ...

1newtype State s a = State { runState :: s -> (a,s) }

2
3instance Functor (State s) where
4 fmap :: (a -> b) -> (State s a) -> (State s b)

5 fmap f g = State

The Monad

The Type Classes
o

O00e00

Introduction

[e]
00

Functor Definition, 3

» That contains a function ...

1newtype State s a = State { runState :: s -> (a,s) }

2

sinstance Functor (State s) where

4 fmap :: (a -> b) -> (State s a) -> (State s b)
s fmap f g = State (\s1l ->

The Type Classes The Monad

Introduction
[e]e]ele] o) [e]

[e]
00

Functor Definition, 4

» That contains a function ...

1newtype State s a = State { runState :: s -> (a,s) }

2

sinstance Functor (State s) where

4 fmap :: (a -> b) -> (State s a) -> (State s b)

s fmap f g = State (\sl1 -> let (x,s2) = runState g sl
p in (f x, s2))

Introduction The Type Classes The Monad
[e] O0000e o
00

Applicative

» Similar reasoning gives us the Applicative functor.

1instance Applicative (State s) where

> pure x = State (\s -> (x,s))

3 —— (<*>) :: State s (a—>b) -> State s a —> State b

4 f1 <x> x1 = State (\s -> let (f,s2) runState f1 s
5 (x,s3) runState x1 s2
6 in (f x,s3))

Introduction The Type Classes

The Monad
o 000000
00

The Monad

1instance Monad (State s) w
> return = pure

3 ——x :: State s a

4 —— f :: a -> State s b

5 —— output :: State s b

¢ x >>=f = State (\s -> let (y,s2) = runState x s

7 (z,s3) = runState (f y) s2
8 in (z,s3))

u]
8
I
ul
it

	Introduction
	Objectives
	Types

	The Type Classes
	

	The Monad
	

