Introduction
00

Manipulating States
00

Get and Put
00000

Introduction Manipulating States
®0 00

Get and Put
00000

Introduction
oce

State Monad Example

Dr. Mattox Beckman

UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN
DEPARTMENT OF COMPUTER SCIENCE

Manipulating States
[ele}

Get and Put
00000

Objectives

» Define get and put.
» Write some stateful computations using the state monad.

Introduction Manipulating States
[ele} (1}

Get and Put
00000

The Definition

1data State s a = State { runState :: s -> (a,s) }

2

3instance Monad (State s) where

4

5

6

return = pure —- or ... return a = State (\s -> (a,s))
x >>= f = State (\s -> let (y,s2) runState x s
(z,s3) = runState (f y) s2
in (z,s3))

Incrementing a State, 1

» State s a = State { runState :: s -> (a,s) }

» How can we write something that will increment the s component?

1incState (State f) = ...

Introduction
00

Manipulating States
oe

Get and Put Introduction
00000 00

Manipulating States
00

Get and Put
©0000

Incrementing a State, 2

» State s a = State { runState ::

s -> (a,s) }

Two Common Functions

» Two common functions:

» How can we write something that will increment the s component?

1incState (State f) = State (\s -> let (x,s0) = f s in (x, s0+1))

or ...

1incState f = State (\s -> let (x,s0) = runState f s in (x, s0+1))

Sample run:

*Main> let el = State (\s
*Main> incState (State f)

-> (5,s))

= State (\s -> let (x,s0) = f s in (x,s0+1))

1get ::

3
sput ::

State s s
2get = State (\s -> (s,s))

a -> State a

sput x = State (\s > (

,X))

*Main> runState (State (\s -> (5,s)) >>=

(8,8)

\v -> get) 8

*Main> runState (State (\s -> (5,s)) >>= put) 8

*Main> runState (incState el) O 0,5
(5,1)
Introduction Manipulating States Get and Put Introduction Manipulating States Get and Put
Tracing Get Tracing Put
1(State (\s -> (5,8)) >>= \v -> get) 1(State (\s -> (5,s)) >>= put)
1State (\s1 -> let (x,s2) = (\s -> (5,s8)) s1 1State (\s1 -> let (x,s2) = (\s -> (5,s8)) s1
2 (y,s3) = runState ((\v -> get) x) s2 2 (y,s3) = runState (put x) s2
3 in (y,s3) 3 in (y,s3)
18tate (\s1 -> let (x,s2) = (5,s1) 1State (\s1 -> let (x,s2) = (5,s1)
2 (y,s3) = runState ((\v -> get) x) s2 2 (y,s3) = runState (put x) s2
3 in (y,s3) 3 in (y,s3)
1State (\s1l -> let (y,s3) = runState ((\v -> get) 5) sl 15tate (\s1l -> let (y,s3) = runState (put 5) sl
2 in (y,s3) 2 in (y,s3)
1State (\s1 -> (\s -> (s,s)) sl) 18tate (\s1 -> (\s -> (0),5)) s1)
1State (\s1 -> (s1,s1)) 18tate (\s1 -> (0),5))

Introduction Manipulating States

[e]e] [e]e]
!

Get and Put
00000

Introduction
00

Manipulating States
00

Get and Put
0000e

Using Do Notation

» Bind notation can be cumbersome

» Do notation to the rescue!

mmul a b = do

2 x <- a —— == gq >>=\z > (
3 y <- b - b >>= \y ->
4 return (xxy) —- return (z*y))

5

sPrelude> mmul [10] [20]

7 [200]

gPrelude> mmul [10] [20,40]

s [200,400]

ioPrelude> mmul (Just 5) Nothing
nNothing

Do Notation for States

1sar x = do

> put (x*2)

3 let y = 10

4 z <- get

5 return y * z

*Main> runState (sar
(140,14)

-= >>= \z -> get

7) 0

