
Introduction Manipulating States Get and Put

State Monad Example

Dr. Mattox Beckman

University of Illinois at Urbana-Champaign

Department of Computer Science



Introduction Manipulating States Get and Put

Objectives

I Define get and put.
I Write some stateful computations using the state monad.



Introduction Manipulating States Get and Put

The Definition

1 data State s a = State { runState :: s -> (a,s) }
2

3 instance Monad (State s) where
4 return = pure -- or ... return a = State (\s -> (a,s))
5 x >>= f = State (\s -> let (y,s2) = runState x s
6 (z,s3) = runState (f y) s2
7 in (z,s3))



Introduction Manipulating States Get and Put

Incrementing a State, 1

I State s a = State { runState :: s -> (a,s) }
I How can we write something that will increment the s component?

1 incState (State f) = ...



Introduction Manipulating States Get and Put

Incrementing a State, 2

I State s a = State { runState :: s -> (a,s) }
I How can we write something that will increment the s component?

1 incState (State f) = State (\s -> let (x,s0) = f s in (x, s0+1))

or ...

1 incState f = State (\s -> let (x,s0) = runState f s in (x, s0+1))

Sample run:

*Main> let e1 = State (\s -> (5,s))
*Main> incState (State f) = State (\s -> let (x,s0) = f s in (x,s0+1))
*Main> runState (incState e1) 0
(5,1)



Introduction Manipulating States Get and Put

Two Common Functions

I Two common functions:

1 get :: State s s
2 get = State (\s -> (s,s))
3

4 put :: a -> State a ()
5 put x = State (\s -> ((),x))

*Main> runState (State (\s -> (5,s)) >>= \v -> get) 8
(8,8)
*Main> runState (State (\s -> (5,s)) >>= put) 8
((),5)



Introduction Manipulating States Get and Put

Tracing Get

1 (State (\s -> (5,s)) >>= \v -> get)

1 State (\s1 -> let (x,s2) = (\s -> (5,s)) s1
2 (y,s3) = runState ((\v -> get) x) s2
3 in (y,s3)

1 State (\s1 -> let (x,s2) = (5,s1)
2 (y,s3) = runState ((\v -> get) x) s2
3 in (y,s3)

1 State (\s1 -> let (y,s3) = runState ((\v -> get) 5) s1
2 in (y,s3)

1 State (\s1 -> (\s -> (s,s)) s1)

1 State (\s1 -> (s1,s1))



Introduction Manipulating States Get and Put

Tracing Put

1 (State (\s -> (5,s)) >>= put)

1 State (\s1 -> let (x,s2) = (\s -> (5,s)) s1
2 (y,s3) = runState (put x) s2
3 in (y,s3)

1 State (\s1 -> let (x,s2) = (5,s1)
2 (y,s3) = runState (put x) s2
3 in (y,s3)

1 State (\s1 -> let (y,s3) = runState (put 5) s1
2 in (y,s3)

1 State (\s1 -> (\s -> ((),5)) s1)

1 State (\s1 -> ((),5))



Introduction Manipulating States Get and Put

Using Do Notation

I Bind notation can be cumbersome.

I Do notation to the rescue!

1 mmul a b = do
2 x <- a -- == a >>= \x -> (
3 y <- b -- b >>= \y ->
4 return (x*y) -- return (x*y))
5

6 Prelude> mmul [10] [20]
7 [200]
8 Prelude> mmul [10] [20,40]
9 [200,400]

10 Prelude> mmul (Just 5) Nothing
11 Nothing



Introduction Manipulating States Get and Put

Do Notation for States

1 sar x = do
2 put (x*2)
3 let y = 10
4 z <- get -- >>= \z -> get
5 return y * z

*Main> runState (sar 7) 0
(140,14)


	Introduction
	Objectives

	Manipulating States
	Incrementing a State

	Get and Put
	


