FIRST Sets

Dr. Mattox Beckman

University of Illinois at Urbana-Champaign Department of Computer Science

Objectives

► Compute the FIRST sets for the nonterminal symbols of a grammar.

The Problem

- \triangleright Given a grammar for a language L, how can we recognize a sentence in L?
- ► Solution: Divide and conquer: Given a symbol *E* ...
 - ▶ What symbols indicate that the symbol *E* is just starting? (FIRST Set)
 - ▶ What symbols should we expect to see after we have finished parsing an *E*?

Misleadingly simple example:
$$S \rightarrow xEy$$
 FIRST(E) ={ z,q } $E \rightarrow zE$ FOLLOW(E)={ y } $E \rightarrow q$

Important because a parser can see only a few tokens at once.

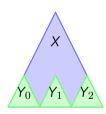
Algorithm

We can compute the FIRST set by a simple iterative algorithm. For each symbol *X*:

- 1. If X is a terminal, then $FIRST(X) = \{X\}$.
- 2. If there is a production $X \to \epsilon$, then add ϵ to FIRST(X).
- 3. If there is a production $X \to Y_1 Y_2 \cdots Y_n$, then add $FIRST(Y_1 Y_2 \cdots Y_n)$ to FIRST(X):
 - ▶ If $FIRST(Y_1)$ does not contain ϵ , then $FIRST(Y_1Y_2\cdots Y_n) = FIRST(Y_1)$.
 - ▶ Otherwise, $FIRST(Y_1Y_2\cdots Y_n) = FIRST(Y_1)/\epsilon \cup FIRST(Y_2\cdots Y_n)$.
 - ▶ If all of $Y_1, Y_2, ..., Y_n$ have ϵ then add ϵ to FIRST(X).

Diagram

$$X \rightarrow Y_0 Y_1 Y_2$$



- ▶ If there is a production $X \to Y_1 Y_2 \cdots Y_n$, then add $FIRST(Y_1 Y_2 \cdots Y_n)$ to FIRST(X):
 - ▶ If $FIRST(Y_1)$ does not contain ϵ , then $FIRST(Y_1Y_2\cdots Y_n) = FIRST(Y_1)$.
 - ▶ Otherwise, $FIRST(Y_1Y_2\cdots Y_n) = FIRST(Y_1)/\epsilon \cup FIRST(Y_2\cdots Y_n)$.
 - ▶ If all of $Y_1, Y_2, ... Y_n$ have ϵ then add ϵ to FIRST(X).

Small Examples

Example 1

 $S \rightarrow x A B$

FIRST set of S is $\{x\}$.

Example 2

 $A o \epsilon$

 $A \rightarrow y$

 $A \rightarrow z q$

FIRST set of A is $\{y, z, \epsilon\}$.

Example 3

 $B \rightarrow A q$

 $B \rightarrow r$

FIRST set of *B* is $\{y, z, q, r\}$.

Example 4

 $C \rightarrow A A$

 $C \rightarrow B$

FIRST set of *C* is $\{y, z, q, r, \epsilon\}$.

Grammar

 $S \to \mathtt{if} \, E \, \mathtt{then} \, S \; ;$

 $S \to \mathtt{print}\, E;$

 $E \rightarrow E + E$

 $E o P \, \mathrm{id}$

 $P \rightarrow *P$

 $P
ightarrow \epsilon$

Result

S={}

E={}

P={}

Action

Step 1: Create a list of symbols.

ACIIO

Grammar

```
S \rightarrow \text{if } E \text{ then } S ; \Leftarrow
S \rightarrow \text{print } E ; \Leftarrow
E \rightarrow E + E
E \rightarrow P \text{ id}
P \rightarrow *P \Leftarrow
P \rightarrow \epsilon \Leftarrow
```

Result

```
S={if, print }
E={}
P={\epsilon, *}
```

Action

Step 2: Add terminals starting productions, and all ϵ .

Grammar

```
S \rightarrow \text{if } E \text{ then } S;

S \rightarrow \text{print } E;

E \rightarrow E + E

E \rightarrow P \text{ id} \Leftarrow

P \rightarrow *P

P \rightarrow \epsilon
```

Result

```
S={if,print}
E={*,id}
P={\epsilon,*}
```

Action

Step 3: Check productions. Add FIRST(Pid) to FIRST(E).

Grammar

```
S \rightarrow \text{if } E \text{ then } S;

S \rightarrow \text{print } E;

E \rightarrow E + E \Leftarrow

E \rightarrow P \text{ id}

P \rightarrow * P

P \rightarrow \epsilon
```

Result

```
S={if,print}
E={*,id}
P={\epsilon,*}
```

Action

Step 4: Check productions: $E \rightarrow E + E$ adds nothing. We're done.

Grammar

 $S \rightarrow Ax$

 $S \rightarrow By$ $S \rightarrow z$

 $A \rightarrow 1CB$

 $A \rightarrow 2B$

 $B \rightarrow 3B$

 $B \rightarrow C$

 $C \rightarrow 4$

 $C
ightarrow \epsilon$

Result

S ={}

A={}

 $B = \{ \}$

C={}

Action

Create a chart.

Grammar

$$S \to Ax$$

 $S \to By$

$$S \rightarrow z \Leftarrow$$

$$A \rightarrow 1CB \Leftarrow$$

$$A \rightarrow 2B \Leftarrow$$

$$B \rightarrow 3B \Leftarrow$$

$$B \rightarrow C$$

$$C
ightarrow 4$$
 \Leftarrow

$$C \rightarrow \epsilon \Leftarrow$$

Action

Result

$$S = \{ z \}$$

$$A = \{ 1, 2 \}$$

$$B = { 3}$$

Grammar

 $S \rightarrow Ax \Leftarrow S \rightarrow By$ $S \rightarrow z$

 $A \rightarrow 1CB$

 $A \rightarrow 2B$

 $B \rightarrow 3B$ $B \rightarrow C$

 $C \rightarrow 4$

 $C
ightarrow \epsilon$

Result

 $S = \{z, 1, 2\}$

 $A = \{1, 2\}$

 $B = \{3\}$

 $C=\{\epsilon, 4\}$

Action

Add FIRST(Ax) to FIRST(S).

Grammar

$$S \to Ax$$

$$S \to By \Leftarrow$$

$$S \to z$$

$$A \rightarrow 1CB$$

$$A \rightarrow 2B$$

$$B \rightarrow 3B$$

 $B \rightarrow C$

$$C \rightarrow 4$$

$$extstyle C
ightarrow \epsilon$$

Result

$$S = \{z, 1, 2, 3\}$$

 $A = \{1, 2\}$
 $B = \{3\}$

$$C=\{\epsilon, 4\}$$

Action

Add FIRST(By) to FIRST(S). Note that there is still more to be added to FIRST(B)! We will

Grammar

$$S \to Ax$$

$$S \to By$$

$$S \to z$$

$$A \to 1CB$$

$$A \to 2B$$

$$B \to 3B$$

$$B \to C \Leftarrow$$

$$C \to 4$$

$$C \to \epsilon$$

Result

S={z, 1, 2, 3}
A={1, 2}
B={3, 4,
$$\epsilon$$
}
C={ ϵ , 4}

Action

Add FIRST(C) to FIRST(B). At this point we should iterate again to see if anything changes.

Grammar

$$S \rightarrow Ax \Leftarrow S \rightarrow By$$

 $S \rightarrow z$

$$A \rightarrow 1CB$$

$$A \rightarrow 2B$$

$$B \rightarrow 3B$$

$$B \rightarrow C$$

$$C \rightarrow 4$$
 $C \rightarrow \epsilon$

Result

$$S = \{z, 1, 2, 3\}$$

 $A = \{1, 2\}$

B={3, 4,
$$\epsilon$$
}
C={ ϵ , 4}

Action

Add FIRST(Ax) to FIRST(S) again. Nothing happens ...

Grammar

$$S \to Ax$$

 $S \to By \Leftarrow$

$$S \rightarrow z$$

 $A \rightarrow 1CB$

$$A \rightarrow 2B$$

$$B \rightarrow C$$

$$C \rightarrow 4$$
 $C \rightarrow \epsilon$

Result

$$S = \{z, 1, 2, 3, 4, y\}$$

A=\{1, 2\}

$$B = \{3, 4, \epsilon\}$$

$$C=\{\epsilon, 4\}$$

Action

Add $FIRST(B_V)$ to FIRST(S) again. The 4 gets propagated. Since B could be ϵ we need to add

Grammar

 $S \to Ax$ $S \to By$ $S \to z$ $A \to 1CB$ $A \to 2B$ $B \to 3B$ $B \to C \Leftarrow$ $C \to 4$ $C \to \epsilon$

Result

$$S = \{z, 1, 2, 3, 4, y\}$$

 $A = \{1, 2\}$
 $B = \{3, 4, \epsilon\}$
 $C = \{\epsilon, 4\}$

Action

Add FIRST(C) to FIRST(B) again. We are done.