
Introduction LL Parsing Breaking LL Parsers

LL Parsing

Dr. Mattox Beckman

University of Illinois at Urbana-Champaign

Department of Computer Science

Introduction LL Parsing Breaking LL Parsers

Objectives

The topic for this lecture is a kind of grammar that works well with recursive-descent parsing.

I Classify a grammar as being LL or not LL.

I Use recursive-descent parsing to implement an LL parser.

I Explain how left-recursion and common prefixes defeat LL parsers.

Introduction LL Parsing Breaking LL Parsers

What Is LL(n) Parsing?

I An LL parse uses a Left-to-right scan and produces a Leftmost derivation, using n tokens

of lookahead.

I A.k.a. top-down parsing

Example Grammar:

S→+ E E

E→int
E→∗ E E

Example Input:

+ 2 * 3 4

Syntax Tree:

S

Introduction LL Parsing Breaking LL Parsers

What Is LL(n) Parsing?

I An LL parse uses a Left-to-right scan and produces a Leftmost derivation, using n tokens

of lookahead.

I A.k.a. top-down parsing

Example Grammar:

S→+ E E

E→int
E→∗ E E

Example Input:

+ 2 * 3 4

Syntax Tree:

S

+ E E

Introduction LL Parsing Breaking LL Parsers

What Is LL(n) Parsing?

I An LL parse uses a Left-to-right scan and produces a Leftmost derivation, using n tokens

of lookahead.

I A.k.a. top-down parsing

Example Grammar:

S→+ E E

E→int
E→∗ E E

Example Input:

+ 2 * 3 4

Syntax Tree:

S

+ E

2

E

Introduction LL Parsing Breaking LL Parsers

What Is LL(n) Parsing?

I An LL parse uses a Left-to-right scan and produces a Leftmost derivation, using n tokens

of lookahead.

I A.k.a. top-down parsing

Example Grammar:

S→+ E E

E→int
E→∗ E E

Example Input:

+ 2 * 3 4

Syntax Tree:

S

+ E

2

E

* E E

Introduction LL Parsing Breaking LL Parsers

What Is LL(n) Parsing?

I An LL parse uses a Left-to-right scan and produces a Leftmost derivation, using n tokens

of lookahead.

I A.k.a. top-down parsing

Example Grammar:

S→+ E E

E→int
E→∗ E E

Example Input:

+ 2 * 3 4

Syntax Tree:

S

+ E

2

E

* E

3

E

Introduction LL Parsing Breaking LL Parsers

What Is LL(n) Parsing?

I An LL parse uses a Left-to-right scan and produces a Leftmost derivation, using n tokens

of lookahead.

I A.k.a. top-down parsing

Example Grammar:

S→+ E E

E→int
E→∗ E E

Example Input:

+ 2 * 3 4

Syntax Tree:

S

+ E

2

E

* E

3

E

4

Introduction LL Parsing Breaking LL Parsers

How to Implement It

Interpreting a Production

I Think of a production as a function definition.

I The LHS is the function being defined.

I Terminals on RHS are commands to consume input.

I Nonterminals on RHS are subroutine calls.

I For each production, make a function of type [String] -> (Tree,[String]).
I Input is a list of tokens.
I Output is a syntax tree and remaining tokens.

I Of course, you need to create a type to represent your tree.

Introduction LL Parsing Breaking LL Parsers

Things to Notice

Key Point – Prediction

I Each function immediately checks the first token of the input string to see what to do next.

1 getE [] = undefined
2 getE ('*':xs) =
3 let e1,r1 = getE xs
4 e2,r2 = getE r1
5 in (ETimes e1 e2, r2)
6 getE -- other code follows

Introduction LL Parsing Breaking LL Parsers

Left Recursion

Left Recursion Is Bad

I A rule like E → E + E would cause an infinite loop.

1 getE xx =
2 let e1,r1 = getE xx
3 ('+':r2) = r1
4 e2,r3 = getE r2
5 in (EPlus e1 e2, r3)

Introduction LL Parsing Breaking LL Parsers

Rules with Common Prefixes

Common Prefixes Are Bad

I A pair of rules rule like
E → − E

| − E E
would confuse the function.

Which version of the rule should be used?

1 getE ('-':xs) = ... -- unary rule
2 getE ('-':xs) = ... -- binary rule

I NB: Common prefixes must be for the same nonterminal. E.g., E → x A and S → x B do

not count as common prefixes.

