Introduction LL Parsing Breaking LL Parsers Introduction LL Parsing Breaking LL Parsers
[e) 000 00 o 000 00
: :

Objectives

LL Parsing

The topic for this lecture is a kind of grammar that works well with recursive-descent parsing.

Dr. Mattox Beckman » Classify a grammar as being LL or not LL.

» Use recursive-descent parsing to implement an LL parser.

UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN

» Explain how left-recursion and common prefixes defeat LL parsers.
DePARTMENT OF COMPUTER SCIENCE

Introduction LL Parsing Breaking LL Parsers Introduction LL Parsing Breaking LL Parsers
What Is LL(n) Parsing? What Is LL(n) Parsing?
» An LL parse uses a Left-to-right scan and produces a Leftmost derivation, using n tokens » AnLL parse uses a Left-to-right scan and produces a Leftmost derivation, using n tokens
of lookahead. of lookahead.
> A.k.a. top-down parsing > A.k.a. top-down parsing
Example Grammar: Syntax Tree: Example Grammar: Syntax Tree:
S S
S—+EE S—+EE / | \
E—int E—int + E E
E—xEE E—xEE
Example Input: Example Input:

+2 %34 + 2 %34

Introduction LL Parsing Breaking LL Parsers Introduction LL Parsing Breaking LL Parsers
[e) €00 00 [e) €00 00
:

What Is LL(n) Parsing? What Is LL(n) Parsing?
» An LL parse uses a Left-to-right scan and produces a Leftmost derivation, using n tokens » An LL parse uses a Left-to-right scan and produces a Leftmost derivation, using n tokens
of lookahead. of lookahead.
> A k.a. top-down parsing > A .k.a. top-down parsing
Example Grammar: Syntax Tree: Example Grammar: Syntax Tree:
S S
S>+EE /l\ S+ EE /l\
E—int n E E E—int " E E
E—xEE l E—-xEE l / l \
Example Input: 2 Example Input: 2 * E E
+ 2 % 34 + 2 % 34
Introduction LL Parsing Breaking LL Parsers Introduction LL Parsing Breaking LL Parsers
What Is LL(n) Parsing? What Is LL(n) Parsing?
» An LL parse uses a Left-to-right scan and produces a Leftmost derivation, using n tokens » An LL parse uses a Left-to-right scan and produces a Leftmost derivation, using n tokens
of lookahead. of lookahead.
> A.k.a. fop-down parsing > A.k.a. fop-down parsing
Example Grammar: Syntax Tree: Example Grammar: Syntax Tree:
S S
5__}_% EE (////////// l \\\\\\\\\\N S“>‘F EE (///////// l \\\\\\\\\N
E—int + E E E—int + E E
Eo+EE AN Em+EE VS RN
Example Input: 2 * E E Example Input: 2 * E E
+2 %3 4 | +2 %34 [
3 3 4

Introduction
[e)

LL Parsing
0®0

Breaking LL Parsers
00

Introduction LL Parsing Breaking LL Parsers
[e) ooe 00

How to Implement It

Interpreting a Production

Introduction
o

>

>
>
>

Think of a production as a function definition.

The LHS is the function being defined.

Terminals on RHS are commands to consume input.

Nonterminals on RHS are subroutine calls.

For each production, make a function of type [String] -> (Tree, [String]).

» Input is a list of tokens.

» Output is a synfax tree and remaining fokens.

Of course, you need to create a type to represent your tree.

LL Parsing
000

Breaking LL Parsers
®0

Things to Notice

Key Point — Prediction
» Each function immediately checks the first token of the input string to see what to do next.
1getE [] = undefined

2getE ('*':xs) =
3 let el,rl = getE xs

4 e2,r2 = getE rl

5 in (ETimes el e2, r2)

sgetE —— other code follows
Introduction LL Parsing Breaking LL Parsers
o [ele]e) oce

Left Recursion

Left Recursion Is Bad

» Arulelike E — E + E would cause an infinite loop.

1getE xx =

2

3

4

5

let el,rl = getE xx
('+':r2) = r1
e2,r3 = getE r2

in (EPlus el e2, r3)

Rules with Common Prefixes

Common Prefixes Are Bad
E— —E

| —EE

Which version of the rule should be used?

» A pair of rules rule like would confuse the function.

1getE ('-':xs)
2getE ('-':xs)

-— unary rule

-- binary rule

» NB: Common prefixes must be for the same nonterminal. E.g., E — x Aand S — x B do
not count as common prefixes.

