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Objectives

LL Parsing

The topic for this lecture is a kind of grammar that works well with recursive-descent parsing.

Dr. Mattox Beckman » Classify a grammar as being LL or not LL.

» Use recursive-descent parsing to implement an LL parser.

UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN

» Explain how left-recursion and common prefixes defeat LL parsers.
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What Is LL(n) Parsing? What Is LL(n) Parsing?
» An LL parse uses a Left-to-right scan and produces a Leftmost derivation, using n tokens » AnLL parse uses a Left-to-right scan and produces a Leftmost derivation, using n tokens
of lookahead. of lookahead.
> A.k.a. top-down parsing > A.k.a. top-down parsing
Example Grammar: Syntax Tree: Example Grammar: Syntax Tree:
S S
S—+EE S—+EE / | \
E—int E—int + E E
E—xEE E—xEE
Example Input: Example Input:

+2 %34 + 2 %34
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What Is LL(n) Parsing? What Is LL(n) Parsing?
» An LL parse uses a Left-to-right scan and produces a Leftmost derivation, using n tokens » An LL parse uses a Left-to-right scan and produces a Leftmost derivation, using n tokens
of lookahead. of lookahead.
> A k.a. top-down parsing > A .k.a. top-down parsing
Example Grammar: Syntax Tree: Example Grammar: Syntax Tree:
S S
S>+EE /l\ S+ EE /l\
E—int n E E E—int " E E
E—xEE l E—-xEE l / l \
Example Input: 2 Example Input: 2 * E E
+ 2 % 34 + 2 % 34
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What Is LL(n) Parsing? What Is LL(n) Parsing?
» An LL parse uses a Left-to-right scan and produces a Leftmost derivation, using n tokens » An LL parse uses a Left-to-right scan and produces a Leftmost derivation, using n tokens
of lookahead. of lookahead.
> A.k.a. fop-down parsing > A.k.a. fop-down parsing
Example Grammar: Syntax Tree: Example Grammar: Syntax Tree:
S S
5__}_% EE (////////// l \\\\\\\\\\N S“>‘F EE (///////// l \\\\\\\\\N
E—int + E E E—int + E E
Eo+EE AN Em+EE VS RN
Example Input: 2 * E E Example Input: 2 * E E
+2 %3 4 | +2 %34 [
3 3 4
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How to Implement It

Interpreting a Production
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o
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Think of a production as a function definition.

The LHS is the function being defined.

Terminals on RHS are commands to consume input.

Nonterminals on RHS are subroutine calls.

For each production, make a function of type [String] -> (Tree, [String]).

» Input is a list of tokens.

» Output is a synfax tree and remaining fokens.

Of course, you need to create a type to represent your tree.
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Things to Notice

Key Point — Prediction
» Each function immediately checks the first token of the input string to see what to do next.
1getE [] = undefined

2getE ('*':xs) =
3 let el,rl = getE xs

4 e2,r2 = getE rl

5 in (ETimes el e2, r2)

sgetE .... —— other code follows
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Left Recursion

Left Recursion Is Bad

» Arulelike E — E + E would cause an infinite loop.

1getE xx =

2

3

4

5

let el,rl = getE xx
('+':r2) = r1
e2,r3 = getE r2

in (EPlus el e2, r3)

Rules with Common Prefixes

Common Prefixes Are Bad
E— —E

| —EE

Which version of the rule should be used?

» A pair of rules rule like would confuse the function.

1getE ('-':xs)
2getE ('-':xs)

-— unary rule

-- binary rule

» NB: Common prefixes must be for the same nonterminal. E.g., E — x Aand S — x B do
not count as common prefixes.



