
Introduction Eliminating Left Recursion Eliminating Common Prefixes FIRST/FOLLOW conflicts

Fixing Non-LL Grammars

Dr. Mattox Beckman

University of Illinois at Urbana-Champaign

Department of Computer Science

Introduction Eliminating Left Recursion Eliminating Common Prefixes FIRST/FOLLOW conflicts

Objectives

Last time we talked about grammars cannot be parsed using LL. Here we will try to fix them.

I Eliminate left recursion and mutual left recursion from a grammar.

I Eliminate common prefixes from a grammar.

I Detect and eliminate conflicts with FIRST and FOLLOW sets.

Introduction Eliminating Left Recursion Eliminating Common Prefixes FIRST/FOLLOW conflicts

The Idea
Consider deriving i++++ from the following grammar:

E→E+
“We can have as many +s as we want at the end of

the sentence.”

E→i “The first word must be an i.”

E

E

E

E

E

i +

+

+

+

+

Introduction Eliminating Left Recursion Eliminating Common Prefixes FIRST/FOLLOW conflicts

More Complicated Example

Consider the following grammar. What does it mean?

B → Bxy | Bz | q | r

I At the end can come any combination of x y or z.
I At the beginning can come q or r.

Introduction Eliminating Left Recursion Eliminating Common Prefixes FIRST/FOLLOW conflicts

Eliminating the Left Recursion

We can rewrite these grammars
E → E+ | i
B → Bxy | Bz | q | r

using the following transformation:

I Productions of the form S → β become S → βS′.
I Productions of the form S → Sα become S′ → αS′.
I Add S′ → ε.

Result:

E → iE′

E′ → +E′ | ε
B → qB′| rB′
B′ → xyB′| zB′ | ε

Introduction Eliminating Left Recursion Eliminating Common Prefixes FIRST/FOLLOW conflicts

Mutual Recursions!

Things are slightly more complicated if we have mutual recursions.

A → Aa | Bb | Cc | q
B → Ax | By | Cz | rA
C → Ai | Bj | Ck | sB

How to do it:

I Take the first symbol (A) and eliminate immediate left recursion.

I Take the second symbol (B) and substitute left recursions to A. Then eliminate immediate

left recursion in B.

I Take the third symbol (C) and substitute left recursions to A and B. Then eliminate

immediate left recursion in C.

Introduction Eliminating Left Recursion Eliminating Common Prefixes FIRST/FOLLOW conflicts

Left Recursion Example

Here is a more complex left recursion.

A → Aa | Bb | Cc | q
B → Ax | By | Cz | rA
C → Ai | Bj | Ck | sB
First we eliminate the left recursion from A.

A → Aa | Bb | Cc | q
This is the result:
A → BbA′ | CcA′ | qA′

A′ → aA′ | ε

Introduction Eliminating Left Recursion Eliminating Common Prefixes FIRST/FOLLOW conflicts

Left Recursion Example, 2

We substituting in the new definition of A, and now we will work on the B productions.

A → BbA′ | CcA′ | qA′

A′ → aA′ | ε
B → Ax | By | Cz | rA
C → Ai | Bj | Ck | sB
First, we eliminate the “backward” recursion from B to A.

Start: B → Ax

Result: B → BbA′x | CcA′x | qA′x

Introduction Eliminating Left Recursion Eliminating Common Prefixes FIRST/FOLLOW conflicts

Left Recursion Example, 3

A → BbA′ | CcA′ | qA′

A′ → aA′ | ε
B → BbA′x | CcA′x | qA′x | By | Cz | rA
C → Ai | Bj | Ck | sB
Now we can eliminate the simple left recursion in B:

B → CcA′xB′ | qA′xB′ | CzB′ | rAB′
B′ → bA′xB′ | yB′ | ε

Introduction Eliminating Left Recursion Eliminating Common Prefixes FIRST/FOLLOW conflicts

Left Recursion Example, 4

A → BbA′ | CcA′ | qA′

A′ → aA′ | ε
B → CcA′xB′ | qA′xB′ | CzB′ | rAB′
B′ → bA′xB′ | yB′ | ε
C → Ai | Bj | Ck | sB

Now production C: First, replace left recursive calls to A ...

C → B bA′i | CcA′i | qA′i | B j | Ck | sB

Next, replace left recursive calls to B (this gets messy) ...

C → CcA′xB′ bA′i | qA′xB′ bA′i | CzB′ bA′i | rAB′ bA′i

CcA′xB′ j | qA′xB′ j | CzB′ j | rAB′ j
CcA′i | qA′i | Ck | sB

Introduction Eliminating Left Recursion Eliminating Common Prefixes FIRST/FOLLOW conflicts

Left Recursion Example, 5

Reorganizing C, we have:
C → qA′xB′bA′i | rAB′bA′i | qA′xB′j | rAB′j | qA′i | sB

CcA′xB′bA′i | CzB′bA′i | CcA′xB′j | CzB′j |CcA′i | Ck

Eliminating left recursion gives us:

C → qA′xB′bA′iC′ | rAB′bA′iC′ | qA′xB′jC′

| rAB′jC′ | qA′iC′ | sBC′

C′ → cA′xB′bA′iC′ | zB′bA′iC′ | cA′xB′jC′

| zB′jC′ |cA′iC′ | kC′ | ε

Introduction Eliminating Left Recursion Eliminating Common Prefixes FIRST/FOLLOW conflicts

The Result

Our final grammar:

A → BbA′ | CcA′ | qA′

A′ → aA′ | ε
B → CcA′xB′ | qA′xB′ | CzB′ | rAB′
B′ → bA′xB′ | yB′ | ε
C → qA′xB′bA′iC′ | rAB′bA′iC′ | qA′xB′jC′

| rAB′jC′ | qA′iC′ | sBC′

C′ → cA′xB′bA′iC′ | zB′bA′iC′ | cA′xB′jC′

| zB′jC′ | cA′iC′ | kC′ | ε

Beautiful, isn’t it? I wonder why we don’t do this more often?

I Disclaimer: If there is a cycle (A →+ A) or an epsilon production (A → ε) then this
technique is not guaranteed to work.

Introduction Eliminating Left Recursion Eliminating Common Prefixes FIRST/FOLLOW conflicts

Common Prefix

This grammar has common prefixes.

A → xyB | CyC | q
B → zC | zx | w
C → y | x

To check for common prefixes, take a nonterminal and compare the FIRST sets of each

production.

Production FirstSet

A → xyB {x}
A → CyC {x, y}
A → q {q}

If we are viewing an A, we will want to look at the

next token to see which A production to use. If that

token is x, then which production do we use?

Introduction Eliminating Left Recursion Eliminating Common Prefixes FIRST/FOLLOW conflicts

Left Factoring

If A → αβ1 | αβ2 | γ we can rewrite it as
A → αA′ | γ
A′ → β1 | β2.

So, in our example:

A → xyB | CyC | q
B → zC | zx | w
C → y | x

becomes A → xA′ | q | yyC
A′ → yB | yC
B → zB′ | w
B′ → C | x
C → y | x.

Sometimes you’ll need to do this more than once. Note that this process can destroy the

meaning of the nonterminals.

Introduction Eliminating Left Recursion Eliminating Common Prefixes FIRST/FOLLOW conflicts

Epsilon Productions

I Epsilon productions have to be handled with care.

A → Bc

| x

B → c

| ε

Is this LL?

Introduction Eliminating Left Recursion Eliminating Common Prefixes FIRST/FOLLOW conflicts

Epsilon Productions

A → Bc

| x

B → c

| ε

I FOLLOW(B) = {c}, and FIRST(B) = {c}, so we have a conflict when trying to parse B.
I We can substitute the B rule into the A rule to fix this ...

I Be sure to check if you have introduced a common prefix though!

A → cc

| c

| x

⇒
A → cA′

| x

A′ → c

| ε

