Introduction Eliminating Left Recursion Eliminating Common Prefixes FIRST/FOLLOW conflicts
[} 0000000000 [e]e] [e]e)

Fixing Non-LL Grammars

Dr. Mattox Beckman

UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN
DEPARTMENT OF COMPUTER SCIENCE

Introduction Eliminating Left Recursion Eliminating Common Prefixes FIRST/FOLLOW conflicts

[0000000000 00 00
:

Objectives

Last time we falked about grammars cannot be parsed using LL. Here we will try to fix them.

» Eliminate left recursion and mutual left recursion from a grammar.
» Eliminate common prefixes from a grammar.
» Detect and eliminate conflicts with FIRST and FOLLOW sets.

Introduction Eliminating Left Recursion Eliminating Common Prefixes FIRST/FOLLOW conflicts

[©] 9000000000 00 00
:

The ldea

Consider deriving i++++ from the following grammar:
EE+ “We can have as many +s as we want at the end of

the sentence.”

E—i “The first word must be an i.”

Introduction Eliminating Left Recursion Eliminating Common Prefixes FIRST/FOLLOW conflicts

[©] O®00000000 00 00
:

More Complicated Example

Consider the following grammar. What does it mean?
B—Bxy|Bz|qg]|r

» At the end can come any combination of x y or z.

> Af the beginning can come g or r.

Introduction Eliminating Left Recursion Eliminating Common Prefixes FIRST/FOLLOW conflicts

[©] 00®0000000 00 00
:

Eliminating the Left Recursion

E—E+ |i
B—Bxy|Bz|q|r
using the following transformation:

We can rewrite these grammars

» Productions of the form S — 3 become S — 3S.
» Productions of the form S — Sa become S’ — aS'.

> AddS — e
E—iF

E'— +F | e

Result: B - qB/| rB'

B — xyB'| zB' | €

Introduction Eliminating Left Recursion Eliminating Common Prefixes

[©] 000®000000 00
:

FIRST/FOLLOW conflicts
[e]e)

Mutual Recursions!

Things are slightly more complicated if we have mutual recursions.

A — Aa|Bb|Cclqg
B — Ax|By|Cz|rA
C — Ai| Bj| Ck | sB

How to do it:

» Take the first symbol (A) and eliminate immediate left recursion.

» Take the second symbol (B) and substitute left recursions to A. Then eliminate immediate

left recursion in B.

» Take the third symbol (C) and substitute left recursions to A and B. Then eliminate

immediate left recursion in C.

Introduction Eliminating Left Recursion Eliminating Common Prefixes FIRST/FOLLOW conflicts

[©] 0000800000 00 00
:

Left Recursion Example

Here is a more complex left recursion.
A — Aa|Bb|Cclqg
B— Ax|By|Cz|rA
C — Ai|Bj|Ck|sB
First we eliminate the left recursion from A.
A — Aa|Bb|Cclq

This is the result:
A — BbA" | CcA’ | gA’

A= aA | e

Introduction Eliminating Left Recursion Eliminating Common Prefixes FIRST/FOLLOW conflicts

[©] 00000e0000 00 00
:

Left Recursion Example, 2

We substituting in the new definition of A, and now we will work on the B productions.
A — BbA’ | CcA’ | gA’
A —aA | e
B — Ax|By|Cz|rA
C— Ai|Bj|Ck|sB
First, we eliminate the “backward” recursion from B to A.
Start: B — Ax
Result: B — BbA’x | CcA'x | gA'x

Introduction Eliminating Left Recursion Eliminating Common Prefixes FIRST/FOLLOW conflicts

[©] 0000008000 00 00
:

Left Recursion Example, 3

A — BbA" | CcA’ | gA’

A —aA | e

B — BbA'x | CcA'x | gA'x | By | Cz | rA

C — Ai|Bj| Ck|sB
Now we can eliminate the simple left recursion in B:
B — CcA’xB’ | gA’xB" | CzB' | rAB’

B — bA'xB' |yB' | €

Introduction Eliminating Left Recursion Eliminating Common Prefixes FIRST/FOLLOW conflicts

[©] 0000000e00 00 00
:

Left Recursion Example, 4

A — BbA" | CcA’ | gA’
A —aA | e
B — CcA'xB’ | gA'xB’ | CzB" | rAB’
B’ — bA'xB’ |yB' | €
C — Ai|Bj|Ck|sB
Now production C: First, replace left recursive callsto A ...

C— BbA'i|CcA'i|gA’i| Bj|Ck|sB
Next, replace left recursive calls to B (this gets messy) ...
C— CcA'xB' bA'i| gA'xB' bA'i| CzB' bA'i| rAB' bA'i
CcA'xB' j| qA’xB" j| CzB'j| rAB" |
CcA’i|qA’i | Ck | sB

Introduction Eliminating Left Recursion Eliminating Common Prefixes FIRST/FOLLOW conflicts

[©] 0000000080 00 00
:

Left Recursion Example, 5

C — qA'xB'bA'i |rAB'bA’i| gA'xB'j | rAB'j | gA’i | sB
CcAXB'bA'T | CzB'bA'i | CcA'XB'j | CzB'j |CcAli | Ck
C— gAXBbA/IC' | rAB'bA'IC’ | gA'XB/iC’
| rAB'jC" | gA'iC" | sBC'
C' — CcA'xB'bA’iC" | zB'bA’iC" | cA’xB'jiC’
| 2BC’ [cA'IC! | kC' | €

Reorganizing C, we have:

Eliminating left recursion gives us:

Introduction Eliminating Left Recursion Eliminating Common Prefixes FIRST/FOLLOW conflicts
[©] 0O00000000e

00 00
:

The Result

Our final grammar:

A — BbA’ | CcA’ | gA’

A= aA | e

B — CcA'xB’ | gA'xB" | CzB" | rAB’

B — bA'xB' |yB' | €

C — qA'xB'bA'iC’ | rAB'bA’iC" | gA’xB'jC’
| FABJC! | gA'iC! | sBC'

C' — cA'xB'bA’iC" | zB'bA'iC" | cA'xB'jC’
| 2B/C’ | cA'iC’ | KC' | €

Beautiful, isnt it? | wonder why we don’t do this more often?

» Disclaimer: If there is a cycle (A —T A) or an epsilon production (A — €) then this
technique is not guaranteed to work.

Introduction Eliminating Left Recursion Eliminating Common Prefixes FIRST/FOLLOW conflicts

[©] 0000000000 o0 00
:

Common Prefix

This grammar has common prefixes.

A —=xyB|CyC|q
B—zClzx|w
C—ylx

To check for common prefixes, take a nonterminal and compare the FIRST sets of each
production.

Production FirstSet If we are viewing an A, we will want to look at the

A —=xyB {x} next token to see which A production to use. If that

A — CyC {x,y} tokenisx, then which production do we use?

A—=q {a}

Introduction Eliminating Left Recursion Eliminating Common Prefixes FIRST/FOLLOW conflicts

[©] 0000000000 oe 00
:

Left Factoring

A—aA |y

IfA— « o we can rewrite it as
Brlefa s A= By | o

So, in our example:
A —xyB|CyC|q becomes A —xA"|q|yyC

B—zC|lzx|w A= yB|yC

C—yl|x B—zB'|w
B — C|x
C—ylx

Sometimes you'll need to do this more than once. Note that this process can destroy the
meaning of the nonterminals.

Introduction Eliminating Left Recursion Eliminating Common Prefixes FIRST/FOLLOW conflicts
[} 0000000000 [e]e] 0

Epsilon Productions

» Epsilon productions have to be handled with care.

A — Bc
| x

B— ¢
| e

Is this LL?

Introduction Eliminating Left Recursion Eliminating Common Prefixes FIRST/FOLLOW conflicts

[©] 0000000000 00 oe
: :

Epsilon Productions

A— Bc
| x
B— ¢
| €

» FOLLOW(B) = {c}, and FIRST(B) = {c}, so we have a conflict when trying to parse B.
» We can substitute the B rule info the A rule to fix this ...

» Be sure to check if you have introduced a common prefix though!

A o A— cA
| x

=
|« A= ¢

X
| |

	Introduction
	

	Eliminating Left Recursion
	

	Eliminating Common Prefixes
	

	FIRST/FOLLOW conflicts
	

