
Introduction Choices and Recursion Repeating and Composing

Combinator Parsing

Dr. Mattox Beckman

University of Illinois at Urbana-Champaign

Department of Computer Science

Introduction Choices and Recursion Repeating and Composing

Objectives

I Show how to build complex parsers by composing simpler parsers.

I Use monads to hide the mechanics of plumbing the input.

I Build a small parser library similar to the Parsec combinator parser library inHaskell.

Introduction Choices and Recursion Repeating and Composing

The Problem

I Recursive descent parsers are easy to write.

I But plumbing the input is a bit tedious.
I And sometimes the common prefix problem is a real problem.
I And we can’t really compose them.

I So we’ll build a parser combinator library instead.

Introduction Choices and Recursion Repeating and Composing

A Parser

I We begin by defining a type.

I The newtype is like data but with only one constructor.

I Compiler can handle this more efficiently.

I The run function unboxes a parser so we can run it.

1 newtype Parser t = Parser (String -> [(t,String)])
2 run (Parser p) = p

Introduction Choices and Recursion Repeating and Composing

Our First Parser: Parsing a Character

The char Parser

1 char s =
2 Parser (\inp -> case inp of
3 (x:xs) | s == x -> [(x,xs)]
4 otherwise -> [])

I Single quotes are for single characters.

I Double quotes are for strings (lists of characters).

Main> run (char 'a') "asdf"
[('a',"sdf")]
Main> run (char 'a') "qwert"
[]

Introduction Choices and Recursion Repeating and Composing

Predicates and Parsers

I oneOf takes a list of characters and succeeds if the input is one of them.

I In real life you might want to build a lookup table.

1 oneOf xx =
2 Parser (\inp -> case inp of
3 (s:ss) | s `elem` xx -> [(s,ss)]
4 otherwise -> [])
5

6 digit = oneOf ['0'..'9']

Main> run (oneOf "asb") "sb"
[('s',"b")]
Main> run (oneOf "asb") "xsb"
[]
Main> run digit "42"
[('4',"2")]

Introduction Choices and Recursion Repeating and Composing

Making It a Higher Order Function

I sat takes a predicate that it can run on the character.

I Compare with oneOf.

1 oneOf xx =
2 Parser (\inp -> case inp of
3 (s:ss) | s `elem` xx -> [(s,ss)]
4 otherwise -> [])
5

6 sat pred =
7 Parser (\inp -> case inp of
8 (s:ss) | pred s -> [(s,ss)]
9 otherwise -> [])

10

11 digit = sat (\x -> x >= '0' && x <= '9')

Introduction Choices and Recursion Repeating and Composing

Adding a Choice Operator

I We want to compose two parsers together.

I If the first fails, we will try the second.

1 (Parser p1) <|> (Parser p2) =
2 Parser (\inp -> take 1 $ p1 inp ++ p2 inp)

Main> run (digit <|> (char 'a')) "12ab"
[('1',"2ab")]
Main> run (digit <|> (char 'a')) "a2ab"
[('a',"2ab")]
Main> run (digit <|> (char 'a')) "xa2ab"
[]

Introduction Choices and Recursion Repeating and Composing

Recursion

I Come and see the plumbing inherent in the system!

1 rstring [] = Parser (\inp -> [([],inp)])
2 rstring (s:ss) = Parser (\inp ->
3 case run (char s) inp of
4 [(c,r1)] -> case run (rstring ss) r1 of
5 [(cs,rr)] -> [(c:cs,rr)]
6 _ -> []
7 _ -> [])

> run (rstring "Arthur Dent") "Arthur Dent"
[("Arthur Dent","")]

I We have created a parser using recursion, but this is painful.

I What operation do you know that unpacks a data structure, propagates success cases, and

aborts computation after a failure?

Introduction Choices and Recursion Repeating and Composing

Enter the Monad – Functor

1 instance Functor Parser where
2 fmap f (Parser p1) =
3 Parser (\inp -> [(f t, s) |
4 (t,s) <- p1 inp])
5

6 sdi :: Parser Integer
7 sdi = Parser (\inp -> case run digit inp of
8 [(d, dd)] -> [(read [d], dd)]
9 otherwise -> [])

I sdi = “single digit integer,” not “strategic defense initiative”

Main> run sdi "123"
[(1,"23")]
Main> run (fmap (+1) sdi) "123"
[(2,"23")]

Introduction Choices and Recursion Repeating and Composing

Enter the Monad – Applicative

1 instance Applicative Parser where
2 pure a = Parser (\inp -> [(a,inp)])
3 (Parser p1) <*> (Parser p2) =
4 Parser (\inp -> [(v1 v2, ss2) |
5 (v1,ss1) <- p1 inp,
6 (v2,ss2) <- p2 ss1])

Main> run ((+) <$> sdi <*> sdi) "456"
[(9,"6")]

Introduction Choices and Recursion Repeating and Composing

Enter the Monad

I Remember that f takes data from the first parser and returns a new parser.

1 instance Monad Parser where
2 (Parser p) >>= f =
3 Parser (\inp -> concat [run (f v) inp'
4 | (v,inp') <- p inp])

Main> run (sdi >>= (\x -> sdi >>= (\y -> return $ x + y)))
"8675309"

[(14,"75309")]
Main> run (do x <- sdi

y <- sdi
return $ x + y }) "123"

[(3,"3")]

Introduction Choices and Recursion Repeating and Composing

Recursion, Revisited

I Using do notation, we can really clean up our code.

Before

1 rstring [] = Parser (\inp -> [([],inp)])
2 rstring (s:ss) = Parser (\inp ->
3 case run (char s) inp of
4 [(c,r1)] -> case run (rstring ss) r1 of
5 [(cs,rr)] -> [(c:cs,rr)]
6 _ -> []
7 _ -> [])

Introduction Choices and Recursion Repeating and Composing

Recursion, Revisited

I Using do notation, we can really clean up our code.

After

1 string [] = Parser (\inp -> [([],inp)])
2 string (s:ss) = do v <- char s
3 vv <- string ss
4 return $ v:vv

Introduction Choices and Recursion Repeating and Composing

Many and Many1

1 many p = next <|> return ""
2 where next = do v <- p
3 vv <- many p
4 return (v:vv)
5

6 many1 p = do v <- p
7 vv <- many p
8 return (v:vv)
9

10 spaces = many (oneOf " ")

Introduction Choices and Recursion Repeating and Composing

Returning a Type

1 data Exp = IntExp Integer
2 | OpExp String Exp Exp
3 deriving Show
4

5 int :: Parser Exp
6 int = do digits <- many1 digit
7 spaces
8 return (IntExp $ read digits)

Main> run int "1234 567"
[(IntExp 1234,"567")]
Main> run (many int) "10 20 30 40"
[([IntExp 10,IntExp 20,IntExp 30,IntExp 40],"")]

Introduction Choices and Recursion Repeating and Composing

Operators

1 oper o = do v <- string o
2 spaces
3 return $ OpExp v
4 chainl1 p op = p >>= rest
5 where rest x = do o <- op
6 v <- p
7 rest (o x v)
8 <|> return x
9 expr = chainl1 term (oper "+")

10 term = int <|> parens expr

Main> run expr "10 + 20 + 30"
[(OpExp "+" (OpExp "+" (IntExp 10) (IntExp 20)) (IntExp 30),"")]
Main> run expr "10 + (20 + 30)"
[(OpExp "+" (IntExp 10) (OpExp "+" (IntExp 20) (IntExp 30)),"")]

Introduction Choices and Recursion Repeating and Composing

Longer Example

1 expr = disj `chainl1` orOp
2 disj = conj `chainl1` andOp
3 conj = arith `chainl1` compOp
4 arith = term `chainl1` addOp
5 term = factor `chainl1` mulOp
6 factor = atom

7 atom = intExp
8 <|> ifExp
9 <|> try boolExp

10 <|> funExp
11 <|> appExp
12 <|> letExp
13 <|> varExp
14 <|> parens expr

Introduction Choices and Recursion Repeating and Composing

Longer Example, II

1 letExp = do try $ symbol "let"
2 symbol "["
3 params <- many $ do v <- var
4 e <- expr
5 return (v,e)
6 symbol "]"
7 body <- expr
8 symbol "end"
9 return $ LetExp params body

I The try allows for backtracking.

I There are many packages: parsec, attoparsec, and megaparsec.

	Introduction
	Introduction

	Choices and Recursion
	
	Enter the Monad

	Repeating and Composing
	

