

		▲□> ▲□> ▲目> 一回 ろんの		(ロ)・(型)・(目)・(目)・(ロ)
Introduction	Typing Rules	Monotypes Introduction	Typing Rules	Monotypes
0000	000000	0000 0000	000000	0000

The Language

• We are going to type λ -calculus extended with let, if, arithmetic, and comparisons.

L ::=	λx.L	abstractions
	LL	applications
	let $x = L$ in L	let expressions
	if <i>L</i> then <i>L</i> else <i>L</i>	if expressions
	Ε	expressions
E ::=	X	variables
	n	integers
	b	booleans
	$E \oplus E$	integer operations
	$E \sim E$	integer comparisons
	E && E	boolean and
	E E	boolean or

Format of a Type Judgment

A *type judgment* has the following form:

$\Gamma \vdash \mathbf{e}: \alpha$

where Γ is a *type environment*, *e* is some expression, and α is a *type*.

- ▶ $\Gamma \vdash$ if true then 4 else 38 : Int
- ▶ $\Gamma \vdash \texttt{true} \&\& \texttt{false} : \texttt{Bool}$

Note: the \vdash is pronounced "turnstile" or "entails."

Introduction 000●	Typing Rules 000000	Monotypes 0000	Introduction 0000	Typing Rules ●00000	Monotypes 0000
The Parts of a Rule			Axioms		
Assumptions on top <u>I</u> Conclusion on the bottom If a rule has no assump Γ is a set of the form { Γ may be left out if we Basic idea: the meaning its parts.	$\frac{\Gamma \vdash e_1 : Int \qquad \Gamma \vdash e_2 : Int}{\Gamma \vdash e_1 \oplus e_2 : Int}$ BINOP tions, then it is called an <i>axiom</i> . $x : \alpha; \ldots$ }. don't need a type environment. g of an expression can be determined by co	mbining the meaning of	Constants Similar Variables ► Here, α is a type ► These are rules th	$\frac{\Gamma \vdash n : Int}{\Gamma \vdash n : Int} \text{CONST, when } n \text{ is an integer.}$ ly for True and False. $\frac{\Gamma \vdash x : \alpha}{\Gamma \vdash x : \alpha} \text{VAR, when } x : \alpha \in \Gamma$ <i>variable</i> ; it stands for another type. hat are true no matter what the context is.	
		 		< ロ > < 合 > < 注	er « Er > Er ⊃q@
Introduction 0000	Typing Rules O●0000	Monotypes 0000	Introduction 0000	Typing Rules 00●000	Monotypes 0000
Simple Rules			Example 0		
Binary Arithmetic Integer Relations	$\frac{\Gamma \vdash e_1 : \texttt{Int} \qquad \Gamma \vdash e_2 : \texttt{Int}}{\Gamma \vdash e_1 \oplus e_2 : \texttt{Int}} B$ $\frac{\Gamma \vdash e_1 : \texttt{Int} \qquad \Gamma \vdash e_2 : \texttt{Int}}{\Gamma \vdash e_1 \sim e_2 : \texttt{Bool}} R$	SINOP SELOP	Suppose we want to pr Assume that $\Gamma = \{x :$ First thing: Write down	rove that $\Gamma \vdash (x * 5 > 7)$ & $y : Bool .$ Int ; $y : Bool $ on the thing you are trying to prove, and put a bar over it. $\overline{\Gamma \vdash (x + 5 > 7)}$	
Booleans Ops	$rac{\Gammadash e_1: \mathtt{Bool} \qquad \Gammadash e_2: \mathtt{Bool}}{\Gammadash e_1 \mathtt{\&} e_2: \mathtt{Bool}}$ B	BOOLOP	Look at the outermost	f = (x * 5 > 7) && y : BOOL	
You can actually conflate the	ese rules by using signatures.				
		≺□>≺॑॑॑॑॑॓॓२२२२२२२२२२२२२२२२२२२२२२२२२२२२२२२		<ロ> (日) (日) (日) (日)	E> < E> E - 940

Introduction 0000	Typing Rules 00●000	Monotypes 0000	Introduction 0000	Typing Rules 000€00	Monotypes 0000
Example 0			Example O		
Suppose we want to prove that Γ + Assume that $\Gamma = \{x : Int ; y : Bo$ First thing: Write down the thing y I Look at the <i>outermost</i> expression.	(x * 5 > 7) & $y : Bool.ou are trying to prove, and put a bar over it.Y \vdash (x * 5 > 7) & y : BoolWhat rule applies here?$		Suppose we want Assume that $\Gamma =$ Write parts on top What to do next?	to prove that $\Gamma \vdash (x * 5 > 7)\&\& y : Bool.$ {x : Int ; y : Bool } and put a bar over them as well. $\frac{\overline{\Gamma \vdash x * 5 > 7 : Bool} \qquad \overline{\Gamma \vdash y : Bool}}{\Gamma \vdash (x * 5 > 7)\&\& y : Bool} Bool$ Let's work left to right. The expression we want next	LOP is a "greater"
$\frac{\Gamma \vdash e_1 : 1}{\Gamma}$	Bool $\Gamma \vdash e_2:$ Bool $\vdash e_1$ && $e_2:$ Bool $\vdash e_1$ && $e_2:$ Bool		expression. (Besic	les, the y expression is already an axiom.)	
	< = > < 6	・ (音) (音) 音 のへの			(ロ)(母)(言)(言) 言 のへの
Introduction 0000	Typing Rules oooo⊕o	Monotypes 0000	Introduction 0000	Typing Rules 00000●	Monotypes 0000
Example O Suppose we want to prove that Γ to	(x*5>7)&& y : Bool .		Example O Suppose we want	to prove that $\Gamma \vdash (x*5>7)$ && $y: t Bool$.	
Assume that $\Gamma = \{x : \texttt{Int}; y : \texttt{Bc}$	ool }		Assume that $\Gamma =$	{x : Int ; y : Bool }	
Following the "greater" rule, we be $\frac{\overline{\Gamma \vdash x * 5 : Int} \overline{I}}{\frac{\Gamma \vdash x * 5 > 7 : 1}{\Gamma \vdash x}}$ We will turn our attention to the m	reak the x * 5 > 7 into two parts. $\frac{1}{1+7: Int}$ ReLOP $\overline{\Gamma \vdash y: Bool}$ $\frac{1}{2} (x * 5 > 7) \&\& y: Bool$ ultiplication now.	olOp	$\frac{\Gamma \vdash x : \operatorname{Int}}{\Gamma \vdash x * I}$ At this point, there	$\frac{\frac{\Gamma \vdash 5: \text{Int}}{5: \text{Int}} \begin{array}{c} \text{CONST} \\ \hline \Pi \text{NOP} \end{array}}{\frac{\Gamma \vdash 7: \text{Int}}{\Gamma \vdash 7: \text{Int}} \begin{array}{c} \text{CONST} \\ \text{ReLOP} \end{array}}$	<u> </u>
	< □ > < 🗗	< ∃ < ∃ < ∃ < < 			< ロ > < 昂 > < ミ > < ミ > ミ のへの

Introduction 0000	Typing Rules 000000	Monotypes ●000	Introduction 0000	Typing Rules 000000	Monotypes ⊙●⊙⊙
Type Variables in Rules			Function Applica	ation	
 A monotype \(\tau\) can be a Type constant (e.g., I: Instantiated type cons A type variable \(\alpha\) 	<code>nt</code> , <code>Bool</code> , etc.) structor (e.g., [Int], <code>Int</code> $ ightarrow$ Int)			$\frac{\Gamma \vdash \mathbf{e}_1 : \alpha_2 \to \alpha \qquad \Gamma \vdash \mathbf{e}_2 : \alpha_2}{\Gamma \vdash \mathbf{e}_1 \mathbf{e}_2 : \alpha} Fun$	
If Rule $\Gamma \vdash$	$\frac{e_1:\texttt{Bool}}{\Gamma \vdash \texttt{if} \ e_1 \texttt{ then} \ e_2 \texttt{ e}_3 : \alpha} \frac{\Gamma \vdash e_3 : \alpha}{\Gamma \vdash \texttt{if} \ e_1 \texttt{ then} \ e_2 \texttt{ e}_3 \texttt{ e}_3 : \alpha}$	- IF	 If you have to e₂ will pr You can ger 	a function of type $\alpha_2 \rightarrow \alpha$ and an argument e_2 of type roduce an expression of type α . neralize this rule to multiple arguments.	$lpha_2$, then applying e_1
 Here, α is a meta-vari This rule says that if 	able. can result in any type, as long as the then a	and else branches have		$\frac{\Gamma \vdash \texttt{incList} : [\texttt{Int}] \to [\texttt{Int}] \qquad \Gamma \vdash \texttt{xx} : [\texttt{Int}]}{\Gamma \vdash \texttt{incList} \texttt{xx} : [\texttt{Int}]}$	- Fun
Introduction	Duid even include functions.	イロト イラト イミン くきト ミー のへで Monotypes	Introduction	Typing Rules	(ロトィ唇トィミトィミト ミーのへで Monotypes
Function Rule	000000	0000	Function Rule	000000	0000
 Important point: this is You may NOT change 	$\frac{\Gamma \cup \{\mathbf{x} : \alpha_1\} \vdash \mathbf{e} : \alpha_2}{\Gamma \vdash \lambda \mathbf{x}.\mathbf{e} : \alpha_1 \to \alpha_2} ABS$ rule describes types and also describes when	n you may change $\Gamma.$	 Important p You may N 	$\frac{\Gamma \cup \{\mathbf{x} : \alpha_1\} \vdash \mathbf{e} : \alpha_2}{\Gamma \vdash \lambda \mathbf{x} . \mathbf{e} : \alpha_1 \to \alpha_2} \text{ ABS}$ point: this rule describes types and also describes when y OT change Γ except as described!	you may change $\Gamma.$
Example: show that $\{\} \vdash \lambda$	$\mathrm{Ax.}x+1: \mathtt{Int} \ o \mathtt{Int}$.			$\frac{1}{\{\} \vdash \lambda x. x + 1: \texttt{Int} \rightarrow \texttt{Int}} Abs$	

ふつて 川 ふかくぼく (四)・ (日)

► Here is let. Note that HASKELL uses the recursive rule, and it is polymorphic.

Let

$$\frac{\hline{\Gamma \vdash e_1:\tau_1}}{\Gamma \vdash \operatorname{let} \mathtt{x} = e_1 \text{ in } e_2:\tau_2} \operatorname{Let}$$

Letrec

$$\frac{\overline{\Gamma \cup [\mathbf{x}:\tau_1] \vdash \mathbf{e}_1:\tau_1}}{\Gamma \vdash \mathtt{let} \, \mathtt{x} = \mathbf{e}_1 \, \mathtt{in} \, \mathbf{e}_2:\tau_2} \, \mathtt{LetRec}$$

▲□▶▲□▶▲□▶▲□▶ ■ めんの