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Objectives

I Explain the parts of a type judgment.

I Build proof trees to indicate the derivation of a type for a program.

I Explain the circumstances under which a type environment can be modified.
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The Language

I We are going to type λ-calculus extended with let, if, arithmetic, and comparisons.

L ::= λx.L abstractions

| L L applications

| let x = L in L let expressions

| if L then L else L if expressions

| E expressions

E ::= x variables

| n integers

| b booleans

| E⊕ E integer operations

| E ∼ E integer comparisons

| E && E boolean and

| E || E boolean or
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Format of a Type Judgment

A type judgment has the following form:

Γ ` e : α

where Γ is a type environment, e is some expression, and α is a type.

I Γ ` if true then 4 else 38 : Int
I Γ ` true && false : Bool

Note: the ` is pronounced “turnstile” or “entails.”
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The Parts of a Rule

Assumptions on top

Γ ` e1 : Int Γ ` e2 : Int
Binop

Γ ` e1 ⊕ e2 : Int

Conclusion on the bottom

I If a rule has no assumptions, then it is called an axiom.

I Γ is a set of the form {x : α; . . .}.
I Γmay be left out if we don’t need a type environment.

I Basic idea: the meaning of an expression can be determined by combining the meaning of

its parts.
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Axioms

Constants

Const, when n is an integer.
Γ ` n : Int

Similarly for True and False.
Variables

Var, when x : α ∈ Γ
Γ ` x : α

I Here, α is a type variable; it stands for another type.

I These are rules that are true no matter what the context is.
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Simple Rules

Binary Arithmetic

Γ ` e1 : Int Γ ` e2 : Int
BinOp

Γ ` e1 ⊕ e2 : Int
Integer Relations

Γ ` e1 : Int Γ ` e2 : Int
RelOp

Γ ` e1 ∼ e2 : Bool
Booleans Ops

Γ ` e1 : Bool Γ ` e2 : Bool
BoolOp

Γ ` e1&& e2 : Bool
You can actually conflate these rules by using signatures.
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Example 0

Suppose we want to prove that Γ ` (x ∗ 5 > 7)&& y : Bool .

Assume that Γ = {x : Int ; y : Bool }

First thing: Write down the thing you are trying to prove, and put a bar over it.

Γ ` (x ∗ 5 > 7)&& y : Bool

Look at the outermost expression. What rule applies here?
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Example 0

Suppose we want to prove that Γ ` (x ∗ 5 > 7)&& y : Bool .

Assume that Γ = {x : Int ; y : Bool }

First thing: Write down the thing you are trying to prove, and put a bar over it.

Γ ` (x ∗ 5 > 7)&& y : Bool

Look at the outermost expression. What rule applies here?

Γ ` e1 : Bool Γ ` e2 : Bool
BoolOp

Γ ` e1&& e2 : Bool
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Example 0

Suppose we want to prove that Γ ` (x ∗ 5 > 7)&& y : Bool .

Assume that Γ = {x : Int ; y : Bool }

Write parts on top and put a bar over them as well.

Γ ` x ∗ 5 > 7 : Bool Γ ` y : Bool
BoolOp

Γ ` (x ∗ 5 > 7)&& y : Bool

What to do next? Let’s work left to right. The expression we want next is a “greater”

expression. (Besides, the y expression is already an axiom.)
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Example 0

Suppose we want to prove that Γ ` (x ∗ 5 > 7)&& y : Bool .

Assume that Γ = {x : Int ; y : Bool }

Following the “greater” rule, we break the x * 5 > 7 into two parts.

Γ ` x ∗ 5 : Int Γ ` 7 : Int
RelOp

Γ ` x ∗ 5 > 7 : Bool Γ ` y : Bool
BoolOp

Γ ` (x ∗ 5 > 7)&& y : Bool

We will turn our attention to the multiplication now.
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Example 0

Suppose we want to prove that Γ ` (x ∗ 5 > 7)&& y : Bool .

Assume that Γ = {x : Int ; y : Bool }

Var
Γ ` x : Int Const

Γ ` 5 : Int
BinOp

Γ ` x ∗ 5 : Int Const
Γ ` 7 : Int

RelOp
Γ ` x ∗ 5 > 7 : Bool Var

Γ ` y : Bool
BoolOp

Γ ` (x ∗ 5 > 7)&& y : Bool

At this point, there are no more subtrees to expand out. We are done.
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Type Variables in Rules

Amonotype τ can be a

I Type constant (e.g., Int , Bool , etc.)

I Instantiated type constructor (e.g., [Int], Int → Int)
I A type variable α

If Rule

Γ ` e1 : Bool Γ ` e2 : α Γ ` e3 : α
If

Γ ` if e1 then e2 else e3 : α

I Here, α is a meta-variable.

I This rule says that if can result in any type, as long as the then and else branches have

the same type. This could even include functions.
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Function Application

Γ ` e1 : α2 → α Γ ` e2 : α2
Fun

Γ ` e1 e2 : α

I If you have a function of type α2 → α and an argument e2 of type α2, then applying e1
to e2 will produce an expression of type α.

I You can generalize this rule to multiple arguments.

Γ ` incList : [Int]→ [Int] Γ ` xx : [Int]
Fun

Γ ` incList xx : [Int]
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Function Rule

Γ ∪ {x : α1} ` e : α2
Abs

Γ ` λx.e : α1 → α2

I Important point: this rule describes types and also describes when you may change Γ.

I You mayNOT change Γ except as described!

Example: show that {} ` λx.x+ 1 : Int → Int .

Introduction Typing Rules Monotypes

Function Rule

Γ ∪ {x : α1} ` e : α2
Abs

Γ ` λx.e : α1 → α2

I Important point: this rule describes types and also describes when you may change Γ.

I You mayNOT change Γ except as described!

Abs{} ` λx.x+ 1 : Int → Int
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Function Rule

Γ ∪ {x : α1} ` e : α2
Abs

Γ ` λx.e : α1 → α2

I Important point: this rule describes types and also describes when you may change Γ.

I You mayNOT change Γ except as described!

{x : Int } ` x+ 1 : Int
Abs{} ` λx.x+ 1 : Int → Int
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Function Rule

Γ ∪ {x : α1} ` e : α2
Abs

Γ ` λx.e : α1 → α2

I Important point: this rule describes types and also describes when you may change Γ.

I You mayNOT change Γ except as described!

Var{x : Int } ` x : Int Const{x : Int } ` 1 : Int
BinOp{x : Int } ` x+ 1 : Int

Abs{} ` λx.x+ 1 : Int → Int
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Let Rule

I Here is let. Note thatHaskell uses the recursive rule, and it is polymorphic.

Let

Γ ` e1 : τ1 Γ ∪ [x : τ1] ` e2 : τ2
Let

Γ ` let x = e1 in e2 : τ2
Letrec

Γ ∪ [x : τ1] ` e1 : τ1 Γ ∪ [x : τ1] ` e2 : τ2
LetRec

Γ ` let x = e1 in e2 : τ2


