
Introduction Typing Rules Monotypes

Monotype Semantics

Dr. Mattox Beckman

University of Illinois at Urbana-Champaign

Department of Computer Science

Introduction Typing Rules Monotypes

Objectives

I Explain the parts of a type judgment.

I Build proof trees to indicate the derivation of a type for a program.

I Explain the circumstances under which a type environment can be modified.

Introduction Typing Rules Monotypes

The Language

I We are going to type λ-calculus extended with let, if, arithmetic, and comparisons.

L ::= λx.L abstractions

| L L applications

| let x = L in L let expressions

| if L then L else L if expressions

| E expressions

E ::= x variables

| n integers

| b booleans

| E⊕ E integer operations

| E ∼ E integer comparisons

| E && E boolean and

| E || E boolean or

Introduction Typing Rules Monotypes

Format of a Type Judgment

A type judgment has the following form:

Γ ` e : α

where Γ is a type environment, e is some expression, and α is a type.

I Γ ` if true then 4 else 38 : Int
I Γ ` true && false : Bool

Note: the ` is pronounced “turnstile” or “entails.”

Introduction Typing Rules Monotypes

The Parts of a Rule

Assumptions on top

Γ ` e1 : Int Γ ` e2 : Int
Binop

Γ ` e1 ⊕ e2 : Int

Conclusion on the bottom

I If a rule has no assumptions, then it is called an axiom.

I Γ is a set of the form {x : α; . . .}.
I Γmay be left out if we don’t need a type environment.

I Basic idea: the meaning of an expression can be determined by combining the meaning of

its parts.

Introduction Typing Rules Monotypes

Axioms

Constants

Const, when n is an integer.
Γ ` n : Int

Similarly for True and False.
Variables

Var, when x : α ∈ Γ
Γ ` x : α

I Here, α is a type variable; it stands for another type.

I These are rules that are true no matter what the context is.

Introduction Typing Rules Monotypes

Simple Rules

Binary Arithmetic

Γ ` e1 : Int Γ ` e2 : Int
BinOp

Γ ` e1 ⊕ e2 : Int
Integer Relations

Γ ` e1 : Int Γ ` e2 : Int
RelOp

Γ ` e1 ∼ e2 : Bool
Booleans Ops

Γ ` e1 : Bool Γ ` e2 : Bool
BoolOp

Γ ` e1&& e2 : Bool
You can actually conflate these rules by using signatures.

Introduction Typing Rules Monotypes

Example 0

Suppose we want to prove that Γ ` (x ∗ 5 > 7)&& y : Bool .

Assume that Γ = {x : Int ; y : Bool }

First thing: Write down the thing you are trying to prove, and put a bar over it.

Γ ` (x ∗ 5 > 7)&& y : Bool

Look at the outermost expression. What rule applies here?

Introduction Typing Rules Monotypes

Example 0

Suppose we want to prove that Γ ` (x ∗ 5 > 7)&& y : Bool .

Assume that Γ = {x : Int ; y : Bool }

First thing: Write down the thing you are trying to prove, and put a bar over it.

Γ ` (x ∗ 5 > 7)&& y : Bool

Look at the outermost expression. What rule applies here?

Γ ` e1 : Bool Γ ` e2 : Bool
BoolOp

Γ ` e1&& e2 : Bool

Introduction Typing Rules Monotypes

Example 0

Suppose we want to prove that Γ ` (x ∗ 5 > 7)&& y : Bool .

Assume that Γ = {x : Int ; y : Bool }

Write parts on top and put a bar over them as well.

Γ ` x ∗ 5 > 7 : Bool Γ ` y : Bool
BoolOp

Γ ` (x ∗ 5 > 7)&& y : Bool

What to do next? Let’s work left to right. The expression we want next is a “greater”

expression. (Besides, the y expression is already an axiom.)

Introduction Typing Rules Monotypes

Example 0

Suppose we want to prove that Γ ` (x ∗ 5 > 7)&& y : Bool .

Assume that Γ = {x : Int ; y : Bool }

Following the “greater” rule, we break the x * 5 > 7 into two parts.

Γ ` x ∗ 5 : Int Γ ` 7 : Int
RelOp

Γ ` x ∗ 5 > 7 : Bool Γ ` y : Bool
BoolOp

Γ ` (x ∗ 5 > 7)&& y : Bool

We will turn our attention to the multiplication now.

Introduction Typing Rules Monotypes

Example 0

Suppose we want to prove that Γ ` (x ∗ 5 > 7)&& y : Bool .

Assume that Γ = {x : Int ; y : Bool }

Var
Γ ` x : Int Const

Γ ` 5 : Int
BinOp

Γ ` x ∗ 5 : Int Const
Γ ` 7 : Int

RelOp
Γ ` x ∗ 5 > 7 : Bool Var

Γ ` y : Bool
BoolOp

Γ ` (x ∗ 5 > 7)&& y : Bool

At this point, there are no more subtrees to expand out. We are done.

Introduction Typing Rules Monotypes

Type Variables in Rules

Amonotype τ can be a

I Type constant (e.g., Int , Bool , etc.)

I Instantiated type constructor (e.g., [Int], Int → Int)
I A type variable α

If Rule

Γ ` e1 : Bool Γ ` e2 : α Γ ` e3 : α
If

Γ ` if e1 then e2 else e3 : α

I Here, α is a meta-variable.

I This rule says that if can result in any type, as long as the then and else branches have

the same type. This could even include functions.

Introduction Typing Rules Monotypes

Function Application

Γ ` e1 : α2 → α Γ ` e2 : α2
Fun

Γ ` e1 e2 : α

I If you have a function of type α2 → α and an argument e2 of type α2, then applying e1
to e2 will produce an expression of type α.

I You can generalize this rule to multiple arguments.

Γ ` incList : [Int]→ [Int] Γ ` xx : [Int]
Fun

Γ ` incList xx : [Int]

Introduction Typing Rules Monotypes

Function Rule

Γ ∪ {x : α1} ` e : α2
Abs

Γ ` λx.e : α1 → α2

I Important point: this rule describes types and also describes when you may change Γ.

I You mayNOT change Γ except as described!

Example: show that {} ` λx.x+ 1 : Int → Int .

Introduction Typing Rules Monotypes

Function Rule

Γ ∪ {x : α1} ` e : α2
Abs

Γ ` λx.e : α1 → α2

I Important point: this rule describes types and also describes when you may change Γ.

I You mayNOT change Γ except as described!

Abs{} ` λx.x+ 1 : Int → Int

Introduction Typing Rules Monotypes

Function Rule

Γ ∪ {x : α1} ` e : α2
Abs

Γ ` λx.e : α1 → α2

I Important point: this rule describes types and also describes when you may change Γ.

I You mayNOT change Γ except as described!

{x : Int } ` x+ 1 : Int
Abs{} ` λx.x+ 1 : Int → Int

Introduction Typing Rules Monotypes

Function Rule

Γ ∪ {x : α1} ` e : α2
Abs

Γ ` λx.e : α1 → α2

I Important point: this rule describes types and also describes when you may change Γ.

I You mayNOT change Γ except as described!

Var{x : Int } ` x : Int Const{x : Int } ` 1 : Int
BinOp{x : Int } ` x+ 1 : Int

Abs{} ` λx.x+ 1 : Int → Int

Introduction Typing Rules Monotypes

Let Rule

I Here is let. Note thatHaskell uses the recursive rule, and it is polymorphic.

Let

Γ ` e1 : τ1 Γ ∪ [x : τ1] ` e2 : τ2
Let

Γ ` let x = e1 in e2 : τ2
Letrec

Γ ∪ [x : τ1] ` e1 : τ1 Γ ∪ [x : τ1] ` e2 : τ2
LetRec

Γ ` let x = e1 in e2 : τ2

