Introduction The Problem The Algorithm Use Cases Introduction The Problem The Algorithm Use Cases
[e) 00 0000 00000 o 00 0000 00000
: :

Objectives

You should be able to ...

Unification O . . L
Unification is a third major topic that will appear many times in this course. It is used in

languages such as HASKELL and PROLOG, and also in theoretical discussions.

Dr. Mattox Beckman » Describe the problem that unification solves.

UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN » Solve a unification problem.
DEPARTMENT OF COMPUTER SCIENCE T
» Implement unification in HASKELL.

» Describe some use cases for unification.

Introduction The Problem The Algorithm Use Cases Introduction The Problem The Algorithm Use Cases
o L1} 0000 00000 o oce 0000 00000

: :
The Domain The Problem

Terms Have name and arity

» The name will be in western alphabet. > Given terms s and t, try to find a substitution o such that o(s) = o ().
» Arity = “number of arguments” — may be zero

» |f such a substitution exists, it is said that s and t unify.
» Examples: %, z, £ (x,y),x(y,f,2)

» A unification problem is a set of equations S = {s; = t;,s0 = tfo,...}.
Variables Written using Greek alphabet, may be subscripted .f. . P d { 1. . b2 .)
» A unification problem S = {x; = t1,x2 = f2,...} isin solved form if

» The terms x; are distinct variables.
» None of them occur in t;.

» Represent a target for substitution
» Examples: a, B12, 77
Substitutions Mappings from variables to terms
» Examples: 0 = {a — £(x,8),8— y}
» Substitutions are applied: o(g(8)) — g(y)

Our approach: given a unification problem S, we want to find the most general unifier o that
solves it. We will do this by transforming the equations.

Note: arguments fo terms may have non-zero arity, or may be variables.

Introduction The Problem The Algorithm Use Cases Introduction The Problem The Algorithm Use Cases
[e) 00 @000 00000 [e) 00 0800 00000
: :

Four Operations Example

Start with a unification problem S = {s; = t1,s2 = f2, ...} and apply the following
transformations as necessary:
Delete A ftrivial equation t = t can be deleted. (Stolen from “Term Rewriting and All That”)
Decompose An equation f(f,) = f(d,) can be replaced by the set {t = uy,...,t, = up}. {a=1(x), g(a,a) = g(a, B)}
Orient An equation t = x can be replaced by x = tif x is a variable and f is not.

Eliminate an equation x = t can be used fo substitute all occurrences of x in the remainder

of S.
Introduction The Problem The Algorithm Use Cases Introduction The Problem The Algorithm Use Cases
Example Example
(Stolen from “Term Rewriting and All That”)
(Stolen from “Term Rewriting and All That") {a =f(x), g(a,) = g(cv, B)}
{a=1(x), g9(a, 04): g(e, B)}) .)) We can use the eliminate method, replace « with f(x) on the right sides of the equations.
We can use the eliminate method, replace o with f(x) on the right sides of the equations. {o = f(x), g(f(x),f(x)) = g(f(x),)}

We can use the decompose method, and get rid of the g functions.

Introduction The Problem The Algorithm Use Cases Introduction The Problem The Algorithm Use Cases
[e) 00 0800 00000 [e) 00 0800 00000
: :

Example Example

(Stolen from “Term Rewriting and All That”)

(Stolen from “Term Rewriting and All That”) {a =f(x), g(a,) = g(cv, B)}

{a=1f(x), g(e,a) = g(a, B)} We can use the eliminate method, replace « with f(x) on the right sides of the equations.
We can use the eliminate method, replace o with f(x) on the right sides of the equations. {o = f(x), g(f(x),f(x)) = g(f(x),)}

{a =1(x), g(f(x),f(x)) = g(f(x),8)} We can use the decompose method, and get rid of the g functions.

We can use the decompose method, and get rid of the g functions. {a = f(x), f(x) = f(x),f(x) = B}

{a=1(x), f(x) = f(x),f(x) = B} We can delete the f(x) = f(x) equation.

We can delete the f(x) = f(x) equation. {a = f(x), f(x) = B8}

Now we can reorient to make the variables show up on the left side.

Introduction The Problem The Algorithm Use Cases Introduction The Problem The Algorithm Use Cases
o [ele} 0®00 00000 o [ele} 00®0 00000
: :

Example Unification Failures

(Stolen from “Term Rewriting and All That")
{a=1(x), g(a,a) = g(e, B)}

7 There are two situations that can cause unification to fail:
We can use the eliminate method, replace a with f(x) on the right sides of the equations.

{a =1f(x), g(f(x),f(x)) = g(f(x),8)} 1. A pattern mismatch
We can use the decompose method, and get rid of the g functions.
{a=1f(x), fx) = f(x),f(x) = B} f(x) = g(a),h(y) = h(z)

We can delete the f(x) = f(x) equation.
{a =1(x), f(x) = 5}
Now we can reorient to make the variables show up on the left side.

{a=1(x), B=1x)}

Now we are done

S={afx), B f(x)}

Introduction The Problem The Algorithm Use Cases Introduction The Problem The Algorithm Use Cases

] [e]e] [e]e] le} 00000] [e]e] [e]e]e]] 00000
!

Unification Failures Implementation

There are two situations that can cause unification to fail: . - .
To implement this in a programming language:
1. A pattern mismatch
P » Keep two lists: one for the incoming equations, one for the solved variables.

» Remove the first element of the incoming list.
flx) =g(e), hly) = h(z) e
» Decompose and delete manipulate the incoming list.
2. Failing the “occurs check” » Orient and eliminate can be handled in one case.

» Your solution list contains the result once the incoming list is empty.

Introduction The Problem The Algorithm Use Cases Introduction The Problem The Algorithm Use Cases
| o [ele} 0000 ©0000 o [ele} 0000 0®000 |
Example - Compatibility Example - Types

» Your advisor wants you fo fake CS 421 and some theory class.

Type checking is also a form of unification.
» Your mom wants you to fake CS 374 and some language class.

» Can both your advisor and your mom be happy? map :: (a -> b) -> [a] -> [b]
This is a problem we can solve using unification: inc :: Int => Int
foo :: [Int]
» Let f be a “schedule function,” the first argument is a language class, the second
argument is a theory class. Will map (inc) (foo) work?
» s = f(cs421, 3) (where S is a theory class)
» + = f(c, cs374) (where « is a language class) $={(a= B)=(Int = Int), Listfa]=List[Int]}

> Leto = {a— csd421, [+ cs374}

Introduction The Problem The Algorithm Use Cases Introduction The Problem The Algorithm Use Cases
[e) 00 0000 00800 [e) 00 0000 00000
:

Type Checking Solution Example 2 - Types

Here's an example that fails.
S={(a¢= B) = (Int = Int), List[a]=List[Int]}
map :: (a->b) -> [a] -> [b]

» Decompose: {a = Int, [=Int, List[a]=List[Int]} inc : String -> Int

> Substitute: {& = Int, [=Int, List[Int]= List[Int]} foo : [Int]
> Delete: {o = Int, J =Int} Will map (inc) (f00) work?
The original type of map was (o« = 8) = List[a] = List[3].
S={(a=) = (String = Int), List[a]= List[Int|}

We can use our pattern to get the output type: S(List[3]) = List[Int].

Introduction The Problem The Algorithm Use Cases
o [ele} 0000 [elelelel)

Type Checking 2 Solution

S={(a= f) = (String = Int), List[a]= List[Int|}

» Decompose: { = String, [= Int, List[a]=List[Int]}
» Substitute: {o« = string, S = Int, List[String]= List[Int]}
» Error: List[string] # List[Int]!

