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Objectives
You should be able to ...

Unification is a third major topic that will appear many times in this course. It is used in

languages such asHaskell and Prolog, and also in theoretical discussions.

I Describe the problem that unification solves.

I Solve a unification problem.

I Implement unification inHaskell.

I Describe some use cases for unification.
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The Domain

Terms Have name and arity

I The name will be in western alphabet.

I Arity = “number of arguments” – may be zero

I Examples: x, z, f(x,y), x(y,f,z)
Variables Written using Greek alphabet, may be subscripted

I Represent a target for substitution

I Examples: α, β12, γ7

Substitutions Mappings from variables to terms

I Examples: σ = {α 7→ f(x, β), β 7→ y}
I Substitutions are applied: σ(g(β)) → g(y)

Note: arguments to terms may have non-zero arity, or may be variables.
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The Problem

I Given terms s and t, try to find a substitution σ such that σ(s) = σ(t).

I If such a substitution exists, it is said that s and t unify.

I A unification problem is a set of equations S = {s1 = t1, s2 = t2, . . .}.
I A unification problem S = {x1 = t1, x2 = t2, . . .} is in solved form if

I The terms xi are distinct variables.
I None of them occur in ti.

Our approach: given a unification problem S, we want to find the most general unifier σ that

solves it. We will do this by transforming the equations.
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Four Operations

Start with a unification problem S = {s1 = t1, s2 = t2, . . .} and apply the following
transformations as necessary:

Delete A trivial equation t = t can be deleted.

Decompose An equation f(tn) = f(un) can be replaced by the set {t1 = u1, . . . , tn = un}.
Orient An equation t = x can be replaced by x = t if x is a variable and t is not.

Eliminate an equation x = t can be used to substitute all occurrences of x in the remainder

of S.
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Example

(Stolen from “Term Rewriting and All That”)

{α = f(x), g(α, α) = g(α, β)}
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Example

(Stolen from “Term Rewriting and All That”)

{α = f(x), g(α, α) = g(α, β)}
We can use the eliminate method, replace α with f(x) on the right sides of the equations.
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Example

(Stolen from “Term Rewriting and All That”)

{α = f(x), g(α, α) = g(α, β)}
We can use the eliminate method, replace α with f(x) on the right sides of the equations.
{α = f(x), g(f(x), f(x)) = g(f(x), β)}
We can use the decompose method, and get rid of the g functions.
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Example

(Stolen from “Term Rewriting and All That”)

{α = f(x), g(α, α) = g(α, β)}
We can use the eliminate method, replace α with f(x) on the right sides of the equations.
{α = f(x), g(f(x), f(x)) = g(f(x), β)}
We can use the decompose method, and get rid of the g functions.

{α = f(x), f(x) = f(x), f(x) = β}
We can delete the f(x) = f(x) equation.
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Example

(Stolen from “Term Rewriting and All That”)

{α = f(x), g(α, α) = g(α, β)}
We can use the eliminate method, replace α with f(x) on the right sides of the equations.
{α = f(x), g(f(x), f(x)) = g(f(x), β)}
We can use the decompose method, and get rid of the g functions.

{α = f(x), f(x) = f(x), f(x) = β}
We can delete the f(x) = f(x) equation.
{α = f(x), f(x) = β}
Now we can reorient to make the variables show up on the left side.
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Example

(Stolen from “Term Rewriting and All That”)

{α = f(x), g(α, α) = g(α, β)}
We can use the eliminate method, replace α with f(x) on the right sides of the equations.
{α = f(x), g(f(x), f(x)) = g(f(x), β)}
We can use the decompose method, and get rid of the g functions.

{α = f(x), f(x) = f(x), f(x) = β}
We can delete the f(x) = f(x) equation.
{α = f(x), f(x) = β}
Now we can reorient to make the variables show up on the left side.

{α = f(x), β = f(x)}
Now we are done ....

S = {α 7→ f(x), β 7→ f(x)}
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Unification Failures

There are two situations that can cause unification to fail:

1. A pattern mismatch

f(x) = g(α), h(y) = h(z)

2. Failing the “occurs check”

f(α) = f(f(α))
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Unification Failures

There are two situations that can cause unification to fail:

1. A pattern mismatch

f(x) = g(α), h(y) = h(z)

2. Failing the “occurs check”

f(α) = f(f(α))
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Implementation

To implement this in a programming language:

I Keep two lists: one for the incoming equations, one for the solved variables.

I Remove the first element of the incoming list.

I Decompose and delete manipulate the incoming list.
I Orient and eliminate can be handled in one case.

I Your solution list contains the result once the incoming list is empty.
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Example – Compatibility

I Your advisor wants you to take CS 421 and some theory class.

I Your mom wants you to take CS 374 and some language class.

I Can both your advisor and your mom be happy?

This is a problem we can solve using unification:

I Let f be a “schedule function,” the first argument is a language class, the second

argument is a theory class.

I s = f(cs421, β) (where β is a theory class)

I t = f(α, cs374) (where α is a language class)

I Let σ = {α 7→ cs421, β 7→ cs374}
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Example – Types

Type checking is also a form of unification.

map :: (a -> b) -> [a] -> [b]
inc :: Int -> Int
foo :: [Int]

Will map(inc)(foo) work?

S = {(α ⇒ β) = (Int ⇒ Int), List[α] = List[Int]}
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Type Checking Solution

S = {(α ⇒ β) = (Int ⇒ Int), List[α] = List[Int]}

I Decompose: {α = Int, β = Int, List[α] = List[Int]}
I Substitute: {α = Int, β = Int, List[Int] = List[Int]}
I Delete: {α = Int, β = Int}

The original type of map was (α ⇒ β) ⇒ List[α] ⇒ List[β].
We can use our pattern to get the output type: S(List[β]) ≡ List[Int].
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Example 2 – Types

Here’s an example that fails.

map :: (a->b) -> [a] -> [b]
inc : String -> Int
foo : [Int]

Will map(inc)(foo) work?

S = {(α ⇒ β) = (String ⇒ Int), List[α] = List[Int]}
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Type Checking 2 Solution

S = {(α ⇒ β) = (String ⇒ Int), List[α] = List[Int]}

I Decompose: {α = String, β = Int, List[α] = List[Int]}
I Substitute: {α = string, β = Int, List[String] = List[Int]}
I Error: List[string] 6= List[Int]!


