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Objectives

You should be able to ...

Unification O . . L
Unification is a third major topic that will appear many times in this course. It is used in

languages such as HASKELL and PROLOG, and also in theoretical discussions.

Dr. Mattox Beckman » Describe the problem that unification solves.

UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN » Solve a unification problem.
DEPARTMENT OF COMPUTER SCIENCE T
» Implement unification in HASKELL.

» Describe some use cases for unification.
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The Domain The Problem

Terms Have name and arity

» The name will be in western alphabet. > Given terms s and t, try to find a substitution o such that o(s) = o ().
» Arity = “number of arguments” — may be zero

» |f such a substitution exists, it is said that s and t unify.
» Examples: %, z, £ (x,y),x(y,f,2)

» A unification problem is a set of equations S = {s; = t;,s0 = tfo,...}.
Variables Written using Greek alphabet, may be subscripted .f. . P d { 1. . b2 . )
» A unification problem S = {x; = t1,x2 = f2,...} isin solved form if

» The terms x; are distinct variables.
» None of them occur in t;.

» Represent a target for substitution
» Examples: a, B12, 77
Substitutions Mappings from variables to terms
» Examples: 0 = {a — £(x,8),8— y}
» Substitutions are applied: o(g(8)) — g(y)

Our approach: given a unification problem S, we want to find the most general unifier o that
solves it. We will do this by transforming the equations.

Note: arguments fo terms may have non-zero arity, or may be variables.
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Four Operations Example

Start with a unification problem S = {s; = t1,s2 = f2, ...} and apply the following
transformations as necessary:
Delete A ftrivial equation t = t can be deleted. (Stolen from “Term Rewriting and All That”)
Decompose An equation f(f,) = f(d,) can be replaced by the set {t = uy,...,t, = up}. {a=1(x), g(a,a) = g(a, B)}
Orient An equation t = x can be replaced by x = tif x is a variable and f is not.

Eliminate an equation x = t can be used fo substitute all occurrences of x in the remainder

of S.
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Example Example
(Stolen from “Term Rewriting and All That”)
(Stolen from “Term Rewriting and All That") {a =f(x), g(a, ) = g(cv, B)}
{a=1(x), g9(a, 04): g(e, B)} ) . ) ) We can use the eliminate method, replace « with f(x) on the right sides of the equations.
We can use the eliminate method, replace o with f(x) on the right sides of the equations. {o = f(x), g(f(x),f(x)) = g(f(x), )}

We can use the decompose method, and get rid of the g functions.
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Example Example

(Stolen from “Term Rewriting and All That”)

(Stolen from “Term Rewriting and All That”) {a =f(x), g(a, ) = g(cv, B)}

{a=1f(x), g(e,a) = g(a, B)} We can use the eliminate method, replace « with f(x) on the right sides of the equations.
We can use the eliminate method, replace o with f(x) on the right sides of the equations. {o = f(x), g(f(x),f(x)) = g(f(x), )}

{a =1(x), g(f(x),f(x)) = g(f(x),8)} We can use the decompose method, and get rid of the g functions.

We can use the decompose method, and get rid of the g functions. {a = f(x), f(x) = f(x),f(x) = B}

{a=1(x), f(x) = f(x),f(x) = B} We can delete the f(x) = f(x) equation.

We can delete the f(x) = f(x) equation. {a = f(x), f(x) = B8}

Now we can reorient to make the variables show up on the left side.
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Example Unification Failures

(Stolen from “Term Rewriting and All That")
{a=1(x), g(a,a) = g(e, B)}

7 . . . . There are two situations that can cause unification to fail:
We can use the eliminate method, replace a with f(x) on the right sides of the equations.

{a =1f(x), g(f(x),f(x)) = g(f(x),8)} 1. A pattern mismatch
We can use the decompose method, and get rid of the g functions.
{a=1f(x), fx) = f(x),f(x) = B} f(x) = g(a),h(y) = h(z)

We can delete the f(x) = f(x) equation.
{a =1(x), f(x) = 5}
Now we can reorient to make the variables show up on the left side.

{a=1(x), B=1x)}

Now we are done ....

S={afx), B f(x)}
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Unification Failures Implementation

There are two situations that can cause unification to fail: . - .
To implement this in a programming language:
1. A pattern mismatch . . . . .
P » Keep two lists: one for the incoming equations, one for the solved variables.

» Remove the first element of the incoming list.
flx) =g(e), hly) = h(z) e
» Decompose and delete manipulate the incoming list.
2. Failing the “occurs check” » Orient and eliminate can be handled in one case.

» Your solution list contains the result once the incoming list is empty.
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Example - Compatibility Example - Types

» Your advisor wants you fo fake CS 421 and some theory class.

Type checking is also a form of unification.
» Your mom wants you to fake CS 374 and some language class.

» Can both your advisor and your mom be happy? map :: (a -> b) -> [a] -> [b]
This is a problem we can solve using unification: inc :: Int => Int
foo :: [Int]
» Let f be a “schedule function,” the first argument is a language class, the second
argument is a theory class. Will map (inc) (foo) work?
» s = f(cs421, 3) (where S is a theory class)
» + = f(c, cs374) (where « is a language class) $={(a= B)=(Int = Int), Listfa]=List[Int]}

> Leto = {a— csd421, [+ cs374}
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Type Checking Solution Example 2 - Types

Here's an example that fails.
S={(a¢= B) = (Int = Int), List[a]=List[Int]}
map :: (a->b) -> [a] -> [b]

» Decompose: {a = Int, [ =Int, List[a]=List[Int]} inc : String -> Int

> Substitute: {& = Int, [ =Int, List[Int]= List[Int]} foo : [Int]
> Delete: {o = Int, J =Int} Will map (inc) (f00) work?
The original type of map was (o« = 8) = List[a] = List[3].
S={(a= ) = (String = Int), List[a]= List[Int|}

We can use our pattern to get the output type: S(List[3]) = List[Int].
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Type Checking 2 Solution

S={(a= f) = (String = Int), List[a]= List[Int|}

» Decompose: { = String, [ = Int, List[a]=List[Int]}
» Substitute: {o« = string, S = Int, List[String]= List[Int]}
» Error: List[string] # List[Int]!



