

		<ロ><日><日><日><日><日><日><日><日><日><日><日><日><日>	≣			◆□ > ◆舂 > ∢屋 > ∢屋 >	■ のへの
Introduction O	The Problem ●O	The Algorithm 0000	Use Cases 00000	Introduction O	The Problem ⊙●	The Algorithm 0000	Use Cases 00000
The Domain				The Problem			

Terms Have name and arity

- The name will be in western alphabet.
- Arity = "number of arguments" may be zero
- Examples: x, z, f(x,y), x(y,f,z)

Variables Written using Greek alphabet, may be subscripted

- Represent a target for substitution
- Examples: $\alpha, \beta_{12}, \gamma_7$

Substitutions Mappings from variables to terms

- Examples: $\sigma = \{ \alpha \mapsto f(\mathbf{x}, \beta), \beta \mapsto \mathbf{y} \}$
- ► Substitutions are applied: $\sigma(g(\beta)) \rightarrow g(y)$

Note: arguments to terms may have non-zero arity, or may be variables.

- Given terms *s* and *t*, try to find a substitution σ such that $\sigma(s) = \sigma(t)$.
- ▶ If such a substitution exists, it is said that *s* and *t* unify.
- A unification problem is a set of equations $S = \{s_1 = t_1, s_2 = t_2, \ldots\}$.
- A unification problem $S = \{x_1 = t_1, x_2 = t_2, ...\}$ is in solved form if
 - The terms *x_i* are distinct variables.
 - None of them occur in t_i .

Our approach: given a unification problem *S*, we want to find the most general unifier σ that solves it. We will do this by transforming the equations.

(Stolen from "Term Rewriting and All That") $\{\alpha = f(x), g(\alpha, \alpha) = g(\alpha, \beta)\}$ We can use the eliminate method, replace α with f(x) on the right sides of the equations. (Stolen from Term Kewriting and All That) $\{\alpha = f(x), g(\alpha, \alpha) = g(\alpha, \beta)\}$ We can use the eliminate method, replace α with f(x) on the right sides of the equations. $\{\alpha = f(x), g(f(x), f(x)) = g(f(x), \beta)\}$ We can use the decompose method, and get rid of the *g* functions.

IntroductionThe ProblemThe AlgorithmUse CasesIntroductionThe ProblemThe AlgorithmUse Cases00<t

Example

Example

(Stolen from "Term Rewriting and All That") { $\alpha = f(x), g(\alpha, \alpha) = g(\alpha, \beta)$ } We can use the eliminate method, replace α with f(x) on the right sides of the equations. { $\alpha = f(x), g(f(x), f(x)) = g(f(x), \beta)$ } We can use the decompose method, and get rid of the *g* functions. { $\alpha = f(x), f(x) = f(x), f(x) = \beta$ } We can delete the f(x) = f(x) equation.

(Stolen from "Term Rewriting and All That") { $\alpha = f(x), g(\alpha, \alpha) = g(\alpha, \beta)$ } We can use the eliminate method, replace α with f(x) on the right sides of the equations. { $\alpha = f(x), g(f(x), f(x)) = g(f(x), \beta)$ } We can use the decompose method, and get rid of the *g* functions. { $\alpha = f(x), f(x) = f(x), f(x) = \beta$ } We can delete the f(x) = f(x) equation. { $\alpha = f(x), f(x) = \beta$ } Now we can reorient to make the variables show up on the left side.

		< ···< ···<!--</th--><th>≣ •ગ < ભ</th><th></th><th></th><th>《日》《聞》《臣》《臣》</th><th>5 n</th>	≣ • ગ < ભ			《日》《聞》《臣》《臣》	5 n
ntroduction	The Problem	The Algorithm	Use Cases	Introduction	The Problem	The Algorithm	Use Cases
O	00	0●00	00000	O	00	00●0	00000

Example

(Stolen from "Term Rewriting and All That") $\{\alpha = f(x), g(\alpha, \alpha) = g(\alpha, \beta)\}$ We can use the eliminate method, replace α with f(x) on the right sides of the equations. $\{\alpha = f(x), g(f(x), f(x)) = g(f(x), \beta)\}$ We can use the decompose method, and get rid of the *g* functions. $\{\alpha = f(x), f(x) = f(x), f(x) = \beta\}$ We can delete the f(x) = f(x) equation. $\{\alpha = f(x), f(x) = \beta\}$ Now we can reorient to make the variables show up on the left side. $\{\alpha = f(x), \beta = f(x)\}$ Now we are done $S = \{\alpha \mapsto f(x), \beta \mapsto f(x)\}$

Unification Failures

There are two situations that can cause unification to fail:

1. A pattern mismatch

$$f(x) = g(\alpha), h(y) = h(z)$$

		< □ > < 圖 > < ≧ > < ≧ >	≣ • ୬ ୯.୧			<ロ> <週> <週> <良> <良>	₹ • १ ९२
Introduction	The Problem	The Algorithm	Use Cases	Introduction	The Problem	The Algorithm	Use Cases
O	OO	0000	●0000	O	OO	0000	0●000

Example – Compatibility

- Your advisor wants you to take CS 421 and some theory class.
- Your mom wants you to take CS 374 and some language class.
- Can both your advisor and your mom be happy?

This is a problem we can solve using unification:

- Let f be a "schedule function," the first argument is a language class, the second argument is a theory class.
- $s = f(cs421, \beta)$ (where β is a theory class)
- $t = f(\alpha, cs374)$ (where α is a language class)
- $\blacktriangleright \text{ Let } \sigma = \{ \alpha \mapsto \mathsf{cs}421, \quad \beta \mapsto \mathsf{cs}374 \}$

Example – Types

Type checking is also a form of unification.

map :: (a -> b) -> [a] -> [b]
inc :: Int -> Int
foo :: [Int]

Willmap(inc)(foo) work?

$$\mathsf{S} = \{(\alpha \Rightarrow \beta) = (\mathtt{Int} \Rightarrow \mathtt{Int}), \quad \mathtt{List}[\alpha] = \mathtt{List}[\mathtt{Int}]\}$$

・ロト・西ト・ヨト・ヨー 今々ぐ

・ロト・日本・モン・モン・ モー シタマ

		<ロ> <週> < 見> < 見	▶ ≣ ৩৭৫
Introduction	The Problem	The Algorithm	Use Cases
O		0000	0000●

Type Checking 2 Solution

 $\mathsf{S} = \{(\alpha \Rightarrow \beta) = (\texttt{String} \Rightarrow \texttt{Int}), \quad \texttt{List}[\alpha] = \texttt{List}[\texttt{Int}]\}$

- ▶ Decompose: { $\alpha = \texttt{String}, \quad \beta = \texttt{Int}, \quad \texttt{List}[\alpha] = \texttt{List}[\texttt{Int}]$ }
- $\blacktriangleright \text{ Substitute: } \{ \alpha = \texttt{string}, \quad \beta = \texttt{Int}, \quad \texttt{List}[\texttt{String}] = \texttt{List}[\texttt{Int}] \}$
- ► Error: List[string] ≠ List[Int]!