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Objectives

You should be able to ...

Unification is a third major topic that will appear many times in this course. It is used in
languages such as HASKELL and PROLOG, and also in theoretical discussions.

» Describe the problem that unification solves.

» Solve a unification problem.

» Implement unification in HASKELL.

» Describe some use cases for unification.
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The Domain

Terms Have name and arity
» The name will be in western alphabet.
» Arity = “number of arguments” - may be zero
» Examples: x, z, £ (x,y), x(y,f,2)
Variables Written using Greek alphabet, may be subscripted

> Represent a farget for substitution
» Examples: «, 812, 77
Substitutions Mappings from variables to terms
» Examples: 0 = {a — £(x,5),5— v}
» Substitutions are applied: o(g(5)) — g(y)

Note: arguments to ferms may have non-zero arity, or may be variables.
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The Problem

» Given terms s and t, try to find a substitution o such that o(s) = o(1).
» If such a substitution exists, it is said that s and t unify.
» A unification problem is a set of equations S = {s1 = 11,52 = to,...}.
» A unification problem S = {x; = t1,x9 = to,...} isin solved form if
» The terms x; are distinct variables.
» None of them occur in t;.

Our approach: given a unification problem S, we want fo find the most general unifier o that
solves it. We will do this by transforming the equations.
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Four Operations

Start with a unification problem S = {s; = t1,s9 = t2, ...} and apply the following
transformations as necessary:
Delete A trivial equationt = t can be deleted.
Decompose An equation f(f,) = f(U,) can be replaced by the set {t; = u1,...,t, = up}.
Orient An equation t = x can be replaced by x = tif x is a variable and f is not.

Eliminate an equation x = f can be used fo substitute all occurrences of x in the remainder
of S.
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(Stolen from “Term Rewriting and All That")

{a=1(x), g(a, @) = g(a, B)}
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Example

(Stolen from “Term Rewriting and All That”)
{a=1x), g(a, ) = g(a, B) }

We can use the eliminate method, replace v with f(x) on the right sides of the equations.
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Example

(Stolen from “Term Rewriting and All That")
{a=1(x), g(e,0) = g(a, )}
We can use the eliminate method, replace «v with f(x) on the right sides of the equations.

{a=f(x), 9(f(x), f(x)) = g(f(x), B)}

We can use the decompose method, and get rid of the g functions.



Introduction The Problem The Algorithm Use Cases

[©] 00 0@00 00000
:

Example

(Stolen from “Term Rewriting and All That”)
{a =f(x), g(a,) = g(cv, 5) }
We can use the eliminate method, replace o with f(x) on the right sides of the equations.

{a = f(x), 9(f(x), f(x)) = g(f(x), B)}

We can use the decompose method, and get rid of the g functions.

{Oé = f<X)7 f(X) - f(X), f(X) - /3}
We can delete the f(x) = f(x) equation.
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Example

(Stolen from “Term Rewriting and All That")
{Oé = f(X)> Q(OK, (Y) = 9(0/7/3)}
We can use the eliminate method, replace « with f(x) on the right sides of the equations.

{a =1(x), g(f(x),f(x)) = 9(f(x),5)}

We can use the decompose method, and get rid of the g functions.
{a =1(x), f(x) = f(x), f(x) = 5}

We can delete the f(x) = f(x) equation.

{a =fx), f(x) = 5}

Now we can reorient to make the variables show up on the left side.
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Example

(Stolen from “Term Rewriting and All That”)

{a =f(x), g(a,) = g(cv, 5) }

We can use the eliminate method, replace o with f(x) on the right sides of the equations.

{a = f(x), 9(f(x), f(x)) = g(f(x), 5)}

We can use the decompose method, and get rid of the g functions.
{a =1(x), f(x) = f(x),f(x) = B}

We can delete the f(x) = f(x) equation.

{a=f(x), f(x) = 5}

Now we can reorient to make the variables show up on the left side.

{a =1(x), B="1(x)}

Now we are done ....

S={a—1(x), B —fx)}



Introduction The Problem The Algorithm Use Cases

[©] 00 [e]e] le) 00000
: :

Unification Failures

There are two situations that can cause unification to fail:

1. A pattern mismatch
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Unification Failures

There are two situations that can cause unification to fail:

1. A pattern mismatch

2. Failing the “occurs check”
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Implementation

To implement this in a programming language:

» Keep two lists: one for the incoming equations, one for the solved variables.
» Remove the first element of the incoming list.

» Decompose and delete manipulate the incoming list.

» Orient and eliminate can be handled in one case.

» Your solution list contains the result once the incoming list is empty.
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Example - Compatibility

» Your advisor wants you to take CS 421 and some theory class.
» Your mom wants you to take CS 374 and some language class.

» Can both your advisor and your mom be happy?
This is a problem we can solve using unification:

P> Lef fbea “schedule function,” the first argument is a language class, the second
argument is a theory class.

» s = f(cs421, 3) (where [ is a theory class)

» t = f(a,cs374) (where «is a language class)

» Leto = {a —cs421, [+ cs374}
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Example - Types

Type checking is also a form of unification.
map :: (a -> b) -> [a] -> [b]
inc :: Int -> Int

foo :: [Int]

Will map (inc) (foo) work?

S={(a=p) = (Int = Int), List[a]=List[Int]}
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Type Checking Solution

S={(a= p) = (Int = Int), List[a]=List[Int]}

» Decompose: {« = Int, [ =Int, List[a]=List[Int|}
» Substitute: {& = Int, [ = Int, List[Int]= List[Int]}
» Delete: {& = Int, [ = Int}

The original type of map was (o« = ) = List[a] = List[f].
We can use our pattern to get the output type: S(List[3]) = List[Int].
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Example 2 - Types

Here's an example that fails.

map :: (a->b) -> [a]l -> [b]
inc : String -> Int

foo : [Int]

Will map (inc) (foo) work?

S={(a= p) = (String = Int), List[a|=List[Int|}
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Type Checking 2 Solution

S={(a= p) = (String = Int), List[a|= List[Int|}

» Decompose: {« = String, [ = Int, List[a]= List[Int|}
» Substitute: {o& = string, [ = Int, List[String|= List[Int|}
» Error: List[string] # List[Int]!
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