
Objectives Equational Reasoning References

State

Dr. Mattox Beckman

University of Illinois at Urbana-Champaign

Department of Computer Science

Objectives Equational Reasoning References

Objectives

I Describe the property of referential transparency.

I Explain how stateful computations complicate the meaning of programs.

I UseOCaml’s references to model state.

Objectives Equational Reasoning References

Definition

The rule of referential transparency:

e1 →∗ v e2 →∗ v f e1 →∗ w

f e2 →∗ w

I If you have two expressions that evaluate to be the same thing then you can use one for

the other without changing the meaning of the whole program.

I E.g. f(x) + f(x) == 2 * f(x)
I You can prove this by induction, using the natural semantic rules from the previous

lectures.

Objectives Equational Reasoning References

I You can use equational reasoning to make the following equivalence:

f(if e1 then e2 else e3) ≡ if e1 then f(e2) else f(e3)

1 x * (if foo then 20 / x else 23 / x) -- equivalent to
2 if foo then 20 else 23 -- well, mostly

I You have the basis now of many compiler optimization opportunities!

Objectives Equational Reasoning References

A Complication

1 # let counter = -- something
2 val counter : unit -> int = <fun>
3 # counter ();;
4 - : int = 1
5 # counter ();;
6 - : int = 2
7 # counter ();;
8 - : int = 3
9 #

I Can we still use equational reasoning to talk about programs now?

Objectives Equational Reasoning References

A Counterexample

I f(x) + f(x) == 2 * f(x)

1 # 2 * counter ();;
2 - : int = 8
3 # counter () + counter ();;
4 - : int = 11

I Congratulations. You just broke mathematics.

Objectives Equational Reasoning References

Reference Operator

Transition Semantics

ref v → $i, where $i is a free location in the state, initialized to v.

! $i → v, if state location $i contains v.
$i := v → (), and state location $i is assigned v.

(); e → e

Note that references are different than pointers: once created, they cannot be moved, only

assigned to and read from.

Objectives Equational Reasoning References

Natural Semantics

e ⇓ v

ref e ⇓ $i
, where $i is a free location in the state, initialized to v.

e ⇓ $i

!e ⇓ v
, if state location $i contains v.

e1 ⇓ $i e2 ⇓ v

e1 := e2 ⇓ ()
, and location $i is set to v.

e1 ⇓ () e2 ⇓ v

e1; e2 ⇓ v

Objectives Equational Reasoning References

Counter, Method 1

1 # let ct = ref 0;;
2 val ct : int ref = {contents=0}
3 # let counter () =
4 ct := !ct + 1;
5 !ct;;
6 val counter : unit -> int = <fun>
7 # counter ();;
8 - : int = 1
9 # counter ();;

10 - : int = 2

Objectives Equational Reasoning References

Bad Things for Counter

ct is globally defined. Two bad things could occur because of this.

1. What if you already had a global variable ct defined?

I Correct solution: use modules.

2. The Stupid UserTM might decide to change ct just for fun.

I Now your counter won’t work like it’s supposed to!
I Now you can’t change the representation without getting tech support calls.
I Remember the idea of abstraction.

Objectives Equational Reasoning References

Conclusions about State

State is bad because:

I It breaks our ability to use equational reasoning.

I Users can get to our global variables and change them without permission.

State is good because:

I Certain constructs are almost impossible without state (e.g., graphs).

I Our world is a stateful one.

