Equational Reasoning

References

References

Equational Reasoning
00000

Objectives

Objectives
o 0000 00000 L] 0000
:
Objectives
State
» Describe the property of referential transparency.
Dr. Mattox Beckman
» Explain how stateful computations complicate the meaning of programs.
UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN » Use OCAML's references to model state.
DEPARTMENT OF COMPUTER SCIENCE
Objectives Equational Reasoning References Objectives Equational Reasoning References
o @000 00000 o [e] lele) 00000
: :
Definition

The rule of referential transparency:

e1 =*v ey =*v fer =" w

feg —*w

» If you have two expressions that evaluate to be the same thing then you can use one for
the other without changing the meaning of the whole program.

> Eg. f(x) + £(x) == 2 * f£(x)

» You can prove this by induction, using the natural semantic rules from the previous
lectures.

» You can use equational reasoning to make the following equivalence:

f(if e; thenej elsees) = if eg then f(ey) else f(e3)

1x * (if foo then 20 / x else 23 / x) —- equivalent to

2if foo then 20 else 23 -- well, mostly

» You have the basis now of many compiler optimization opportunities!

Objectives Equational Reasoning
[e) 00®0

Objectives Equational Reasoning
[e)

oooe

References
00000

A Complication

1# let counter = -- something
2val counter : unit -> int = <fun>
3# counter ();;

4= : int =1
s# counter ();;
6— : int = 2
7# counter ();;
g— : int = 3
o#

» Can we still use equational reasoning to talk about programs now?

Objectives Equational Reasoning
o 0000

A Counterexample

> f(x) + £f(x) == 2 * £(x)

1# 2 * counter ();;

2- : int = 8
3# counter () + counter ();;
4= : int = 11

» Congratulations. You just broke mathematics.

Objectives Equational Reasoning
o

0000

References
0®000

Reference Operator

Transition Semantics

ref v — $i, where $i is a free location in the state, initialized to v.

1$i — v, if state location $i contains v.

$i:=v — (), and state location $i is assigned v.

()ie — e
Note that references are different than pointers: once created, they cannot be moved, only
assigned to and read from.

Natural Semantics

elv

el $i

, if state location $i contains v.
le v
er % elv . 3
——— and location $i is set to v.
e;:=ex | ()

er () exdv

er;ea v

—— where $i is a free location in the state, initialized to v.
refe || $i

Equational Reasoning

Objectives
[e) 0000

References Objectives

Equational Reasoning
00800 [e)

0000

References
00080

Counter, Method 1

1# let ct = ref 0;;

2val ct : int ref = {contents=0}
3# let counter
4 ct := lct + 1;

5 Ict;;

sval counter : unit -> int = <fun>
7# counter HH

g— : int = 1

9# counter HH
- : int = 2

Equational Reasoning

Objectives
o 0000

Bad Things for Counter

ct is globally defined. Two bad things could occur because of this.
1. What if you already had a global variable ct defined?
» Correct solution: use modules.

2. The Stupid User™ might decide to change ct just for fun.
» Now your counter won't work like it's supposed to!

» Now you can’t change the representation without getting tech support calls.

» Remember the idea of abstraction.

References
0000e

Conclusions about State

State is bad because:

> |t breaks our ability to use equational reasoning.

» Users can get to our global variables and change them without permission.

State is good because:

» Certain constructs are almost impossible without state (e.g., graphs).
» Our world is a stateful one.

