
Objectives Local State

State

Dr. Mattox Beckman

University of Illinois at Urbana-Champaign

Department of Computer Science

Objectives Local State

Objectives

I Explain how to use let and function declarations to control when a variable is created.

I Use functions to encapsulate state in a safe manner.

Objectives Local State

Local Variable Example

1 # let foo x =
2 let a = 10 + 20 in
3 a + x;;
4 val foo : int -> int = <fun>
5 # foo 15;;
6 - : int = 45
7 # foo 30;;
8 - : int = 60

How many times does the 10 + 20 get computed?

Objectives Local State

Global Variable Example

1 # let a = 10 + 20;;
2 val a : int = 30
3 # let foo x =
4 a + x;;
5 val foo : int -> int = <fun>
6 # foo 15;;
7 - : int = 45
8 # foo 30;;
9 - : int = 60

How many times does the 10 + 20 get computed?



Objectives Local State

Encapsulated Variable Example

1 # let foo =
2 let a = 10 + 20 in
3 fun x -> a + x;;
4 val foo : int -> int = <fun>
5 # foo 15;;
6 - : int = 45
7 # foo 30;;
8 - : int = 60

How many times does the 10 + 20 get computed?

Objectives Local State

Using Local State

1 # let counter =
2 let ct = ref 0 in
3 fun () -> ct := !ct + 1; !ct;;
4 val counter : unit -> int = <fun>
5 # counter ();;
6 - : int = 1
7 # counter ();;
8 - : int = 2

I This protects ct, making it available only to counter.

Objectives Local State

Bad Pun

1 # fun twice f x = f (f x)
2 # twice counter () + twice counter ();;
3 res4 : Int = 6
4 # twice counter () + twice counter ();;
5 res4 : Int = 14

I Function twice is the Church numeral for 2.

I You know what this means, right?

Objectives Local State

Random Number Generators

1 # let mkRandom s =
2 let s = ref s in
3 fun () -> s := (!s * 541 + 5) mod 1024; !s;;
4 val mkRandom : int ref -> unit -> int = <fun>
5 # let rnd0 = mkRandom (ref 1);;
6 val rnd0 : unit -> int = <fun>
7 # rnd0 ();;
8 - : int = 546
9 # rnd0 ();;

10 - : int = 479
11 # rnd0 ();;
12 - : int = 72



Objectives Local State

Function Tuples

1 # let (counter, reset) =
2 let ct = ref 0 in
3 (fun () -> ct := !ct + 1; !ct),
4 (fun nv -> ct := nv);;
5 val counter : unit -> int = <fun>
6 val reset : int -> unit = <fun>
7 # counter ();;
8 - : int = 1
9 # reset 5;;

10 - : unit = ()
11 # counter ();;
12 - : int = 6


