Introduction
[}

Local State
0000

Dispatching
000000

Real Life
[e]e]

Objects

Dr. Mattox Beckman

UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN
DEPARTMENT OF COMPUTER SCIENCE

Introduction Local State Dispatching Real Life
° 0000 000000 00

:
Objectives

You should be able to ...

In this lecture, we extend the idea of local state from last time fo create a simple
implementation of objects and discuss ifs limitations. We will also show the message dispatch
model of objects, which allows for inheritance and virtual functions.
Your objectives:

» Be able to explain what an object is.

» Implement an object using records and HOFs.

» Implement an object using a message dispatcher.

Introduction Local State Dispatching Real Life

[©] 0000 000000 00
:

Preliminaries

» We will use the following functions during our discussion:

1let pil (x,y) = x
2let pi2 (x,y) =y
slet report (x,y) = print_string "Point: ";

4 print_int x;

5 print_string ",";
6 print_int y;

7 print_newline

slet movept (x,y) (dx,dy) = (x+dx,y+dy)

Introduction Local State Dispatching Real Life
[} 0e00 000000 [e]e]
:

Point

Here is an example of a point using local state.

1let mktPoint myloc =
2 let myloc = ref myloc in

3 (myloc,

4 (fun -> pil !myloc),

5 (fun -> pi2 !myloc),

6 (fun -> report !myloc),

7 (fun dl1 -> myloc := movept !myloc dl))

» This defines a tuple of functions that share a common state.

» It is cumbersome to use.

let (lref,getx,gety,show,move) = mktPoint (2,4);;

Introduction Local State Dispatching
[e]e] I} 000000

[©]

Real Life
[e]e]

Improvement: Use Records

1type point = {

> loc : (int * int) ref; getx : unit -> int;
3 gety : unit -> int; draw : unit -> unit;

4 move : int * int -> unit;

5}

6let mkrPoint newloc =

7 let myloc = ref newloc in

s { loc = myloc;

9 getx = (fun -> pil !myloc);

10 gety = (fun -> pi2 Imyloc);

n draw = (fun -> report !myloc);

12 move = (fun dl -> myloc := movept !myloc dl)}

Introduction Local State Dispatching Real Life

[©] [e]e]e]) 000000 00
:

Adding Self

By the way, this lecture is really about recursion.

11let mkPoint newloc =
2 let rec this =
3 { loc = ref newloc;

4 getx = (fun -> pil !(this.loc));

5 gety = (fun -> pi2 !(this.loc));

6 draw = (fun -> report !(this.loc));

7 move = (fun dl1 ->

8 this.loc := movept !(this.loc) d1)}

9 in this;;

We can store “this” explicitly in the record if we want.

Introduction Local State Dispatching Real Life

[©] 0000 ®00000 00
:

Message Dispatching

Last time we said that an object is a kind of data that can receive messages from the program
or other objects.

» Q: How do we normally represent messages?
> A: With strings!

Let a point object be a function that takes a string and returns an appropriate function
matching that string.

» Question: Suppose p is our point object. What will be its type?

Introduction Local State Dispatching Real Life

[©] 0000 O@0000 00
:

mkPoint

1let mkPoint x y =
2 let x
3 let y =ref y in

ref x in

4 fun st ->

5 match st with

getx" => (fun _ -> !x)
gety" => (fun _ -> ly)

movx" -> (fun nx -> x Ix + nx; nx)
movy" => (fun ny -> y := !y + ny; ny)

_ —> raise (Failure "Unknown message.")

All methods now have to have type int -> int.

Introduction Local State Dispatching Real Life

[©] 0000 00@000 00
:

Subclassing

> Warmup exercise: How would we add a report method?
» Another one: How would we add this support?

Let’s say we want a fastpoint, which moves twice as fast as the original point. What does it
mean for fastpoint to be a subclass of point?

> fastpoint should respond to the same messages.

» |t may override some of them.
> It may add its own.
» It may not remove any methods.

» The fastpoint object will need access to some of the dafa in point.

Introduction Local State Dispatching Real Life

[©] 0000 000@e00 00
:

Implementing

» Two entities involved: the superclass (point) and the subclass (fastpoint)
> fastpoint needs to create an instance of point.
P point construction needs to return the “public” data to fastpoint.

> fastpoint returns a dispatcher:

» |f the fastpoint dispatcher can handle a message, it does.
» Otherwise, it sends the message to point.

Introduction Local State Dispatching Real Life
[©] 0000 000080 00

Code: point

1let mkSuperPoint x y =

2 let x = ref x in

3 let y =ref y in

s ((x,y), (* This part returns the local state *)
s fun st ->

6 match st with

7 | "getx" => (fun _ -> !x)

8 | "gety" => (fun _ -> ly)

9 | "movx" -> (fun nx -> x := !x + nx; nx)
|

"movy" => (fun ny -> y 'y + ny; ny)

n | _ -> raise (Failure "Unknown message."));;

12val mkSuperPoint : int -> int ->

13 (int ref * int ref) * (string -> int -> int) = <fun>

Introduction Local State Dispatching Real Life

[©] 0000 00000e 00
: :

Code: fastpoint

1let mkFastpoint x y =
> let ((x,y),super) = mkSuperPoint x y in
3 fun st ->

4 match st with

5 | "movx" -> (fun nx -> x := !x + 2 * nx; nx)
6 | "movy" => (fun ny -> y := !y + 2 * ny; ny)
7 | _ -> super st;;

» This technique is flexible; we can add methods very easily.

» Butit’s also slow. Imagine if we had a chain of 20 classes!

Introduction
[}

Local State
Q000

Dispatching
000000

Real Life
°0

C++

» Methods and variables are kept in a table: a fixed location.

> “this” is an implicit argument, allowing only one copy of the function to be needed.

» Virtual methods are kept in a vtable, which counts as local data.

Local data for point or fastpoint: | y

X

value of x

value of y

vtable

pointer to vtable

movx

pointer to point.movx

Vtable for point:

movy

pointer to point.movy

(fastpoint vtable is similar.) getx, etc. is static.

Introduction Local State Dispatching Real Life

[©] 0000 000000 oe
:

Discussion

» Other languages (i.e., smalltalk) use a technique very similar to this one.

P Java uses the “every object is of type Object” technique.
» A strong type system makes it somewhat cumbersome to simulate objects. You either
have to:
» define a new type to encompass all objects, or
» force all methods to have the same type.
» Important concept: polymorphism — when functions can operate on multiple types.
(This is different than overloading — when multiple functions exist with the same name,
but different inputs.)

	Introduction
	Objectives

	Local State
	

	Dispatching
	

	Real Life
	

