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Objectives
You should be able to ...

In this lecture, we extend the idea of local state from last time to create a simple

implementation of objects and discuss its limitations. We will also show the message dispatch

model of objects, which allows for inheritance and virtual functions.

Your objectives:

I Be able to explain what an object is.

I Implement an object using records and HOFs.

I Implement an object using a message dispatcher.
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Preliminaries

I We will use the following functions during our discussion:

1 let pi1 (x,y) = x
2 let pi2 (x,y) = y
3 let report (x,y) = print_string "Point: ";
4 print_int x;
5 print_string ",";
6 print_int y;
7 print_newline ()
8 let movept (x,y) (dx,dy) = (x+dx,y+dy)
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Point

Here is an example of a point using local state.

1 let mktPoint myloc =
2 let myloc = ref myloc in
3 ( myloc,
4 (fun () -> pi1 !myloc),
5 (fun () -> pi2 !myloc),
6 (fun () -> report !myloc),
7 (fun dl -> myloc := movept !myloc dl) )

I This defines a tuple of functions that share a common state.

I It is cumbersome to use.

let (lref,getx,gety,show,move) = mktPoint (2,4);;
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Improvement: Use Records

1 type point = {
2 loc : (int * int) ref; getx : unit -> int;
3 gety : unit -> int; draw : unit -> unit;
4 move : int * int -> unit;
5 }
6 let mkrPoint newloc =
7 let myloc = ref newloc in
8 { loc = myloc;
9 getx = (fun () -> pi1 !myloc);

10 gety = (fun () -> pi2 !myloc);
11 draw = (fun () -> report !myloc);
12 move = (fun dl -> myloc := movept !myloc dl)}
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Adding Self

By the way, this lecture is really about recursion.

1 let mkPoint newloc =
2 let rec this =
3 { loc = ref newloc;
4 getx = (fun () -> pi1 !(this.loc));
5 gety = (fun () -> pi2 !(this.loc));
6 draw = (fun () -> report !(this.loc));
7 move = (fun dl ->
8 this.loc := movept !(this.loc) dl)}
9 in this;;

We can store “this” explicitly in the record if we want.
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Message Dispatching

Last time we said that an object is a kind of data that can receive messages from the program

or other objects.

I Q: How do we normally represent messages?

I A: With strings!

Let a point object be a function that takes a string and returns an appropriate function

matching that string.

I Question: Suppose p is our point object. What will be its type?
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mkPoint

1 let mkPoint x y =
2 let x = ref x in
3 let y = ref y in
4 fun st ->
5 match st with
6 | "getx" -> (fun _ -> !x)
7 | "gety" -> (fun _ -> !y)
8 | "movx" -> (fun nx -> x := !x + nx; nx)
9 | "movy" -> (fun ny -> y := !y + ny; ny)

10 | _ -> raise (Failure "Unknown message.")

All methods now have to have type int -> int.
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Subclassing

I Warmup exercise: How would we add a report method?

I Another one: How would we add this support?

Let’s say we want a fastpoint, which moves twice as fast as the original point. What does it

mean for fastpoint to be a subclass of point?

I fastpoint should respond to the same messages.

I It may override some of them.
I It may add its own.
I It may not remove any methods.

I The fastpoint object will need access to some of the data in point.
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Implementing

I Two entities involved: the superclass (point) and the subclass (fastpoint)
I fastpoint needs to create an instance of point.
I point construction needs to return the “public” data to fastpoint.
I fastpoint returns a dispatcher:

I If the fastpoint dispatcher can handle a message, it does.
I Otherwise, it sends the message to point.
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Code: point

1 let mkSuperPoint x y =
2 let x = ref x in
3 let y = ref y in
4 ((x,y), (* This part returns the local state *)
5 fun st ->
6 match st with
7 | "getx" -> (fun _ -> !x)
8 | "gety" -> (fun _ -> !y)
9 | "movx" -> (fun nx -> x := !x + nx; nx)

10 | "movy" -> (fun ny -> y := !y + ny; ny)
11 | _ -> raise (Failure "Unknown message."));;
12 val mkSuperPoint : int -> int ->
13 (int ref * int ref) * (string -> int -> int) = <fun>
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Code: fastpoint

1 let mkFastpoint x y =
2 let ((x,y),super) = mkSuperPoint x y in
3 fun st ->
4 match st with
5 | "movx" -> (fun nx -> x := !x + 2 * nx; nx)
6 | "movy" -> (fun ny -> y := !y + 2 * ny; ny)
7 | _ -> super st;;

I This technique is flexible; we can add methods very easily.

I But it’s also slow. Imagine if we had a chain of 20 classes!
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C++

I Methods and variables are kept in a table: a fixed location.

I “this” is an implicit argument, allowing only one copy of the function to be needed.

I Virtual methods are kept in a vtable, which counts as local data.

Local data for point or fastpoint:
x value of x

y value of y

vtable pointer to vtable

Vtable for point:
movx pointer to point.movx

movy pointer to point.movy

(fastpoint vtable is similar.) getx, etc. is static.
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Discussion

I Other languages (i.e., smalltalk) use a technique very similar to this one.

I Java uses the “every object is of type Object” technique.
I A strong type system makes it somewhat cumbersome to simulate objects. You either

have to:

I define a new type to encompass all objects, or
I force all methods to have the same type.

I Important concept: polymorphism—when functions can operate on multiple types.

(This is different than overloading—when multiple functions exist with the same name,

but different inputs.)
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