
Introduction Local State Dispatching Real Life

Objects

Dr. Mattox Beckman

University of Illinois at Urbana-Champaign

Department of Computer Science

Introduction Local State Dispatching Real Life

Objectives
You should be able to ...

In this lecture, we extend the idea of local state from last time to create a simple

implementation of objects and discuss its limitations. We will also show the message dispatch

model of objects, which allows for inheritance and virtual functions.

Your objectives:

I Be able to explain what an object is.

I Implement an object using records and HOFs.

I Implement an object using a message dispatcher.

Introduction Local State Dispatching Real Life

Preliminaries

I We will use the following functions during our discussion:

1 let pi1 (x,y) = x
2 let pi2 (x,y) = y
3 let report (x,y) = print_string "Point: ";
4 print_int x;
5 print_string ",";
6 print_int y;
7 print_newline ()
8 let movept (x,y) (dx,dy) = (x+dx,y+dy)

Introduction Local State Dispatching Real Life

Point

Here is an example of a point using local state.

1 let mktPoint myloc =
2 let myloc = ref myloc in
3 (myloc,
4 (fun () -> pi1 !myloc),
5 (fun () -> pi2 !myloc),
6 (fun () -> report !myloc),
7 (fun dl -> myloc := movept !myloc dl))

I This defines a tuple of functions that share a common state.

I It is cumbersome to use.

let (lref,getx,gety,show,move) = mktPoint (2,4);;

Introduction Local State Dispatching Real Life

Improvement: Use Records

1 type point = {
2 loc : (int * int) ref; getx : unit -> int;
3 gety : unit -> int; draw : unit -> unit;
4 move : int * int -> unit;
5 }
6 let mkrPoint newloc =
7 let myloc = ref newloc in
8 { loc = myloc;
9 getx = (fun () -> pi1 !myloc);

10 gety = (fun () -> pi2 !myloc);
11 draw = (fun () -> report !myloc);
12 move = (fun dl -> myloc := movept !myloc dl)}

Introduction Local State Dispatching Real Life

Adding Self

By the way, this lecture is really about recursion.

1 let mkPoint newloc =
2 let rec this =
3 { loc = ref newloc;
4 getx = (fun () -> pi1 !(this.loc));
5 gety = (fun () -> pi2 !(this.loc));
6 draw = (fun () -> report !(this.loc));
7 move = (fun dl ->
8 this.loc := movept !(this.loc) dl)}
9 in this;;

We can store “this” explicitly in the record if we want.

Introduction Local State Dispatching Real Life

Message Dispatching

Last time we said that an object is a kind of data that can receive messages from the program

or other objects.

I Q: How do we normally represent messages?

I A: With strings!

Let a point object be a function that takes a string and returns an appropriate function

matching that string.

I Question: Suppose p is our point object. What will be its type?

Introduction Local State Dispatching Real Life

mkPoint

1 let mkPoint x y =
2 let x = ref x in
3 let y = ref y in
4 fun st ->
5 match st with
6 | "getx" -> (fun _ -> !x)
7 | "gety" -> (fun _ -> !y)
8 | "movx" -> (fun nx -> x := !x + nx; nx)
9 | "movy" -> (fun ny -> y := !y + ny; ny)

10 | _ -> raise (Failure "Unknown message.")

All methods now have to have type int -> int.

Introduction Local State Dispatching Real Life

Subclassing

I Warmup exercise: How would we add a report method?

I Another one: How would we add this support?

Let’s say we want a fastpoint, which moves twice as fast as the original point. What does it

mean for fastpoint to be a subclass of point?

I fastpoint should respond to the same messages.

I It may override some of them.
I It may add its own.
I It may not remove any methods.

I The fastpoint object will need access to some of the data in point.

Introduction Local State Dispatching Real Life

Implementing

I Two entities involved: the superclass (point) and the subclass (fastpoint)
I fastpoint needs to create an instance of point.
I point construction needs to return the “public” data to fastpoint.
I fastpoint returns a dispatcher:

I If the fastpoint dispatcher can handle a message, it does.
I Otherwise, it sends the message to point.

Introduction Local State Dispatching Real Life

Code: point

1 let mkSuperPoint x y =
2 let x = ref x in
3 let y = ref y in
4 ((x,y), (* This part returns the local state *)
5 fun st ->
6 match st with
7 | "getx" -> (fun _ -> !x)
8 | "gety" -> (fun _ -> !y)
9 | "movx" -> (fun nx -> x := !x + nx; nx)

10 | "movy" -> (fun ny -> y := !y + ny; ny)
11 | _ -> raise (Failure "Unknown message."));;
12 val mkSuperPoint : int -> int ->
13 (int ref * int ref) * (string -> int -> int) = <fun>

Introduction Local State Dispatching Real Life

Code: fastpoint

1 let mkFastpoint x y =
2 let ((x,y),super) = mkSuperPoint x y in
3 fun st ->
4 match st with
5 | "movx" -> (fun nx -> x := !x + 2 * nx; nx)
6 | "movy" -> (fun ny -> y := !y + 2 * ny; ny)
7 | _ -> super st;;

I This technique is flexible; we can add methods very easily.

I But it’s also slow. Imagine if we had a chain of 20 classes!

Introduction Local State Dispatching Real Life

C++

I Methods and variables are kept in a table: a fixed location.

I “this” is an implicit argument, allowing only one copy of the function to be needed.

I Virtual methods are kept in a vtable, which counts as local data.

Local data for point or fastpoint:
x value of x

y value of y

vtable pointer to vtable

Vtable for point:
movx pointer to point.movx

movy pointer to point.movy

(fastpoint vtable is similar.) getx, etc. is static.

Introduction Local State Dispatching Real Life

Discussion

I Other languages (i.e., smalltalk) use a technique very similar to this one.

I Java uses the “every object is of type Object” technique.
I A strong type system makes it somewhat cumbersome to simulate objects. You either

have to:

I define a new type to encompass all objects, or
I force all methods to have the same type.

I Important concept: polymorphism—when functions can operate on multiple types.

(This is different than overloading—when multiple functions exist with the same name,

but different inputs.)

	Introduction
	Objectives

	Local State
	

	Dispatching
	

	Real Life
	

