
Introduction Types and Objects

Subclassing and Subtyping

Dr. Mattox Beckman

University of Illinois at Urbana-Champaign

Department of Computer Science



Introduction Types and Objects

Objectives
You should be able to ...

The idea of a subtype and a subclass are very closely related, but there is a subtle difference we

would like to cover.

I Explain the difference between a subclass and a subtype.

I Explain the terms covariant and contravariant.

I Identify if two types have a subtyping relationship.



Introduction Types and Objects

How do Types Relate?

I How can you tell if one type is a subtype of another?

I Are integers subtypes of floats? (Or vice-versa?)
I Characters / strings?
I Squares / shapes?

I An integer is a kind of float, so we can say that integer is a subtype of float.



Introduction Types and Objects

How do Types Relate?

I How can you tell if one type is a subtype of another?

I Are integers subtypes of floats? (Or vice-versa?)
I Characters / strings?
I Squares / shapes?

I An integer is a kind of float, so we can say that integer is a subtype of float.

Float

Int



Introduction Types and Objects

Covariance

I Some types take parameters, such as lists and trees.

I If the subtype relationship varies according to the input type, the type is said to be

covariant.

I “Most” types containing parameters are covariant.

Float

Int

[Float]

[Int]



Introduction Types and Objects

Functions
I Functions are an important exception!

I The function type is covariant with respect to the output.

If we are expecting a function that outputs a float, I can give you a function that outputs an

integer without breaking anything. The reverse is not true!
I The function type is contravariant with respect to the input.

If we are expecting a function that takes a float, providing a function that takes an integer

will fail or truncate the input.

Int→ Float

Float→ FloatInt→ Int

Float→ Int



Introduction Types and Objects

The Trouble with Objects ...
Actually, there’s more than just this one!

1 public class A {
2 public A foo(A x) { ... }
3 public A bar() { /* calls foo ... */ }
4 }
5 public class B : A {
6 public B foo(B x) { ... }
7 }

I B.bar inherits from A.
I But B.foo overwrites A.foo.
I When A.bar calls B.foo, what will happen?



Introduction Types and Objects

Conclusions

I Objects have a lot of flexibility and allow us to create useful abstractions.

I They can be implemented using functions. Users of functional programming languages

tend to avoid them.

I These are useful enough in practice, and difficult enough to implement, that most modern

languages now include them, including OCaml. (That’s where the O comes from.)

I Inheritance can be tricky.


	Introduction
	Objectives

	Types and Objects
	


