

0 00	•000 0000000(000000	0 00	000000
History		The Two Questions	
 Starting point: First-order predicate logic. Realization: computers can reason with this kind of logic. Impetus was the study of <i>mechanical theorem proving</i> Developed in 1970 by Alain Colmerauer and Rober Kowalski an Uses: databases, expert systems, Al 	d others	What is the nature of data? Prolog data consists of <i>facts</i> about <i>objects</i> and logical <i>rules</i> . What is the nature of a program? A program in Prolog is a set of facts and rules, followed by a <i>query</i> .	
Introduction O OO	(□) (□) (□) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2	 · · · · · · · · · · · · · · · · · · ·	₹► ₹ ∽ Q (* Prolog 0000 0000000
The Database		Rules	
<pre>a b b c d g g f h h c d g f f f f f f f f f f f f f f f f f f</pre>	< ロ > < 回 > < 注 > < 注 > 注 つ へ で	<pre>imortal(X) := human(X). human(Y) := fatherof(X,Y), human(X). y pathfrom(X,Y) := connected(X,Y). pathfrom(Z,Y). Capital letters are variables. Appearing left of := means "for all" Appearing right of := means "there exists" Vx.human(x) → mortal(x). Vy.(∃x.fatherof(x,y) ∧ human(x)) → human(y) </pre>	≅े हे री⊄(*

Prolog Introduction

Prolog

Introduction

Introduction o oo	Prolog ○○○○ ●○○○○○○ ○○○○○○	Introduction O OO	Prolog ○○○ ○●○○○○○ ○○○○○○
How It Works		How It Works, Next Step	
<pre>Programs are executed by searching the database and attempting to perform unifie 1?- human(socrates) listed, therefore true 2?- mortal(socrates) not listed Relevant rules: 1 human(socrates). 2 human(Y) :- fatherof(X,Y), human(X). 3 mortal(X) :- human(X). Socrates is not listed as being mortal, but mortal(socrates) unifies with mortar replace X with socrates. This gives us a subgoal. Replace X with socrates and</pre>	cation. al (X) if we try it	<pre>Replace X with socrates in this rule: mortal(X) :- human(X). to get imortal(socrates) :- human(socrates). Since human(socrates) is in the database, we know that mortal(socrates) is also the socrates is also the socrates</pre>	true.
< ロ > < 合 > <	E→ < E> E ∽Q (~ Prolog	<ロ><浸><浸><汚<	き ヨー つへで Prolog
0 00	0000 000000000000000000000000000000000	0 00	
Another Example		Another Example	

?- mortal(jane).

Another Example

?- mortal(jane). mortal(X) :- human(X).

Introduction O OO	Prolog Introduction 0000 0 000000000000000000000000000000000000	Prolog ○○○○ ○○●○○○○ ○○○○○○○
Another Example	Another Example	
2- mental (iono)	2- montal (inno)	
mortal(jane): - human(jane).	mortal(jane) :- human(jane).	
human (jano)	buman(jane)	
human(jane) :- fatherof(X,jane), human(X).	human(jane) :- fatherof(X,jane), human(X).	
<pre>fatherof(X,jane)</pre>	<pre>fatherof(X,jane)</pre>	
	<pre>fatherof(socrates,jane)</pre>	
Introduction	見トイミンイミン 注 のへで Prolog Introduction	<ロト < 母 > < 目 > < 目 > 目) のへで Prolog
0 00		0000 0000000 000000
Another Example	Another Example	
?- mortal(jane).	?- mortal(jane).	
<pre>mortal(jane) :- human(jane).</pre>	<pre>mortal(jane) :- human(jane).</pre>	
human(jane)	<pre>human(jane)</pre>	
<pre>human(jane) :- fatherof(socrates,jane), human(socrates</pre>). human(jane) :- fatherof(socrates,jane), human((socrates).
<pre>fatherof(X,jane)</pre>	<pre>fatherof(X,jane)</pre>	
<pre>fatherof(socrates,jane)</pre>	<pre>fatherof(socrates,jane)</pre>	
	human(socrates)	

ntroduction))O		Prolog 0000 000000000000000000000000000000	Introduction O OO	Prolog 0000000 0000000
You Tr	ry			
•	 Given the connected rules, try to come up with a predicate exactlybetween (A,B,C) that is true when B is connected to both A and C. Now make a predicate between (A,B,C) that is true if there's a path from A to B to C. 	₹ •9 q.C+	<pre>1 exactlybetween(A,B,C) :- connected(A,B), connected(B,C). 2 3 between(A,B,C) :- pathfrom(A,B), pathfrom(B,C).</pre>	夏 少く (や
ntroduction		Prolog		Prolog

More Than Just Yes or No

 Prolog can also give you a list of elements that make a predicate true. Remember unification.

```
1?- fatherof(Who,apollo).
2 Who = zeus
```

```
3
4?- pathfrom(c,X).
5X = a ;
6X = h ;
7X = f ;
8X = f ;
9No
```

${\sf Tracing} \ {\tt pathfrom}$

```
1?- pathfrom(c,X).
2---> pathfrom(c,Y) :- connected(c,Y).
3X = a ;
```

When we hit semicolon, we tell it to keep searching. So we *backtrack* through our database to try again.

```
pathfrom(c,Y) :- connected(c,Y).
2---> X = h ;
```

We tell it to try again with this one, too. At this point, we no longer have any rules that say that c is connected to something.

The semicolon is entered by the user — it means to keep searching.

Introduction F O OO	Prolog Introduction 0000 0 0000000 00 0000000 00	Prolog ○○○○ ●○○○○○○
Tracing pathfrom, II	Arithmetic via the is Keyword.	
<pre>pathfrom(c,Y) :- connected(c,Z), pathfrom(Z,Y). We will first find something in the database that says that c is connected to some Z, and then check if there is a path between Z and Y. We find a and h as last time. When we check a, we check for pathfrom(a,Y), and find that connected(a,f) is in the database. The same thing happens for h, which is why f is reported as an answer twice.</pre>	<pre>1 fact(0,1). 2 fact(N,X) :- M is N-1, fact(M,Y), X is Y * N. 3?- fact(5,X). Unify fact(5,X) with fact(N,X). fact(5,X) :- M is 5-1, fact(M,Y), X is Y * 5. Next compute M. fact(5,X) :- 4 is 5-1, fact(4,Y), X is Y * 5. Recursive call sets Y to 24. fact(5,X) :- 4 is 5-1, fact(4,24), X is 24 * 5. Compute X. fact(5,120) :- 4 is 5-1, fact(4,24), 120 is 24 * 5. </pre>	
A 다 > 〈 급 > 〈 분 > 〈 분 > 〈 분 > 〈 분 > 〈 분 > 〈 분 > 〈 분 > 〈 분 > 〈 분 > 〈 분 > 〈 분 > 〈 분 > 〈 분 > 〈 분 > 〈 분 > 〈 년 → 〈 분 > 〈 년 → 〈 () → () ∧ () ∧ () ∧ () ∧ () ∧ () ∧ () ∧ () ∧ () ∧ () ∧ () ∧ () ∧ () ∧ ())))	→ 3 Q (* (□) + 4 団) + 4 \square) + 1	≣ ▶ ≣ ∽९९ Prolog ○○○○ ○○●○○○
Lists	List Example: mylength	
 Empty list: [] Singleton list: [x] List with multiple elements: [x,y,[a,b],c] Head and tail representation: [H T] Differences: Prolog lists are <i>not</i> monotonic! 	<pre>The length predicate is built in. 1 mylength([],0). 2 mylength([H T],X) :- mylength(T,Y), 3</pre>	

```
7 No
```

Introduction 0 00	Prolog Introduction 0000 0 00000000 00 00000000 00 00000000 00	Prolog ○○○○ ○○○○○○○ ○○○○●○
List Example: Sum List	List Example: Append	
<pre>1 sumlist([],0). 2 sumlist([H T],X) :- sumlist(T,Y), 3</pre>	<pre>1 myappend([],X,X). 2 myappend([H T],X,[H Z]) :- myappend(T,X 3 ?- myappend([2,3,4],[5,6,7],X). 4 X = [2, 3, 4, 5, 6, 7]; 5 No 6 ?- myappend(X,[2,3],[1,2,3,4]). 7 No 8 ?- myappend(X,[2,3],[1,2,3]). 9 X = [1]; 10 No</pre>	(,Z).

・ロト・日本・モン・モン・モージョンの

Introduction	Prolog
0	0000
00	000000
	000000

List Example: Reverse

```
Accumulator recursion works in Prolog, too!

1 myreverse(X,Y) :- aux(X,Y,[]).

2 aux([],Y,Y).

<b>3 aux([HX|TX],Y,Z) :- aux(TX,Y,[HX|Z]).

4?- myreverse([2,3,4],Y).

5Y = [4, 3, 2]

myreverse([2,3,4],Y) \rightarrow aux([2,3,4],Y,[]) \rightarrow aux([3,4],Y,[2]) \rightarrow

aux([4],Y,[3,2]) \rightarrow aux([],Y,[4,3,2]) \rightarrow aux([],[4,3,2],[4,3,2]) \rightarrow

myreverse([2,3,4],[4,3,2])
```