
Introduction Prolog

Prolog

Dr. Mattox Beckman

University of Illinois at Urbana-Champaign

Department of Computer Science

Introduction Prolog

Objectives
You should be able to...

In this lecture, we will introduce Prolog.

I Explain how Prolog uses a unification to drive computation.

I Write some simple programs in Prolog.

Introduction Prolog

Logic

Question: How do you decide truth?

I Start with some objects.

“socrates,” “john,” “mary”

I Write down some facts (true statements) about those objects.

I Facts express either properies of the object, or

“socrates is human”
I relationship to other objects.

“mary likes john”

I Write down some rules (facts that are true if other facts are true).

“if X is human then X is mortal”

I Facts and rules can become predicates.

“is socrates mortal?”

Introduction Prolog

First-Order Predicate Logic

First-order predicate logic is one system for encoding these kinds of questions.

I Predicate means that we have functions that take objects and return “true” or “false.”

human(socrates).
I Logic means that we have connectives like and, or, not, and implication.

I First order means that we have variables (created by “for all” and “there exists”), but that

they only work on objects.

∀ X . human(X) → mortal(X).

Introduction Prolog

History

I Starting point: First-order predicate logic.

I Realization: computers can reason with this kind of logic.

I Impetus was the study ofmechanical theorem proving

I Developed in 1970 by Alain Colmerauer and Rober Kowalski and others

I Uses: databases, expert systems, AI

Introduction Prolog

The Two Questions

What is the nature of data?

Prolog data consists of facts about objects and logical rules.

What is the nature of a program?

A program in Prolog is a set of facts and rules, followed by a query.

Introduction Prolog

The Database

c d

b

a

g

h

e f

1 human(socrates).
2 fatherof(socrates,
3 jane).
4 fatherof(zeus,apollo).

1 connected(c,a).
2 connected(c,h).
3 connected(d,b).
4 connected(d,g).
5 connected(a,f).
6 connected(h,f).
7 connected(b,e).
8 connected(g,e).

Introduction Prolog

Rules

1 mortal(X) :- human(X).
2 human(Y) :- fatherof(X,Y), human(X).
3

4 pathfrom(X,Y) :- connected(X,Y).
5 pathfrom(X,Y) :- connected(X,Z),
6 pathfrom(Z,Y).

I Capital letters are variables.

I Appearing left of :-means “for all”
I Appearing right of :-means “there exists”

∀x.human(x) → mortal(x).

∀y.(∃x.fatherof(x, y) ∧ human(x)) → human(y)

Introduction Prolog

How It Works

Programs are executed by searching the database and attempting to perform unification.

1 ?- human(socrates). -- listed, therefore true
2 ?- mortal(socrates). -- not listed

Relevant rules:

1 human(socrates).
2 human(Y) :- fatherof(X,Y), human(X).
3 mortal(X) :- human(X).

Socrates is not listed as being mortal, but mortal(socrates) unifies with mortal(X) if we
replace X with socrates. This gives us a subgoal. Replace X with socrates and try it....

Introduction Prolog

How It Works, Next Step

Replace X with socrates in this rule:
1 mortal(X) :- human(X).
to get

1 mortal(socrates) :- human(socrates).

Since human(socrates) is in the database, we know that mortal(socrates) is also true.

Introduction Prolog

Another Example

I ?- mortal(jane).

I human(jane)

I fatherof(X,jane)

I fatherof(socrates,jane)

I human(socrates)

Introduction Prolog

Another Example

I ?- mortal(jane).

mortal(X) :- human(X).

I human(jane)

I fatherof(X,jane)

I fatherof(socrates,jane)

I human(socrates)

Introduction Prolog

Another Example

I ?- mortal(jane).

mortal(jane) :- human(jane).

I human(jane)

I fatherof(X,jane)

I fatherof(socrates,jane)

I human(socrates)

Introduction Prolog

Another Example

I ?- mortal(jane).

mortal(jane) :- human(jane).

I human(jane)

I fatherof(X,jane)

I fatherof(socrates,jane)

I human(socrates)

Introduction Prolog

Another Example

I ?- mortal(jane).

mortal(jane) :- human(jane).

I human(jane)

human(Y) :- fatherof(X,Y), human(X).

I fatherof(X,jane)

I fatherof(socrates,jane)

I human(socrates)

Introduction Prolog

Another Example

I ?- mortal(jane).

mortal(jane) :- human(jane).

I human(jane)

human(jane) :- fatherof(X,jane), human(X).

I fatherof(X,jane)

I fatherof(socrates,jane)

I human(socrates)

Introduction Prolog

Another Example

I ?- mortal(jane).

mortal(jane) :- human(jane).

I human(jane)

human(jane) :- fatherof(X,jane), human(X).

I fatherof(X,jane)

I fatherof(socrates,jane)

I human(socrates)

Introduction Prolog

Another Example

I ?- mortal(jane).

mortal(jane) :- human(jane).

I human(jane)

human(jane) :- fatherof(X,jane), human(X).

I fatherof(X,jane)

I fatherof(socrates,jane)

I human(socrates)

Introduction Prolog

Another Example

I ?- mortal(jane).

mortal(jane) :- human(jane).

I human(jane)

human(jane) :- fatherof(socrates,jane), human(socrates).

I fatherof(X,jane)

I fatherof(socrates,jane)

I human(socrates)

Introduction Prolog

Another Example

I ?- mortal(jane).

mortal(jane) :- human(jane).

I human(jane)

human(jane) :- fatherof(socrates,jane), human(socrates).

I fatherof(X,jane)

I fatherof(socrates,jane)

I human(socrates)

Introduction Prolog

You Try ...

I Given the connected rules, try to come up with a predicate exactlybetween(A,B,C)
that is true when B is connected to both A and C.

I Now make a predicate between(A,B,C) that is true if there’s a path from A to B to C.

Introduction Prolog

1 exactlybetween(A,B,C) :- connected(A,B), connected(B,C).
2

3 between(A,B,C) :- pathfrom(A,B), pathfrom(B,C).

Introduction Prolog

More Than Just Yes or No

I Prolog can also give you a list of elements that make a predicate true. Remember

unification.

1 ?- fatherof(Who,apollo).
2 Who = zeus
3

4 ?- pathfrom(c,X).
5 X = a ;
6 X = h ;
7 X = f ;
8 X = f ;
9 No

The semicolon is entered by the user — it means to keep searching.

Introduction Prolog

Tracing pathfrom

1 ?- pathfrom(c,X).
2 ---> pathfrom(c,Y) :- connected(c,Y).
3 X = a ;

When we hit semicolon, we tell it to keep searching. So we backtrack through our database to

try again.

1 pathfrom(c,Y) :- connected(c,Y).
2 ---> X = h ;

We tell it to try again with this one, too. At this point, we no longer have any rules that say that

c is connected to something.

Introduction Prolog

Tracing pathfrom, II

1 pathfrom(c,Y) :- connected(c,Z), pathfrom(Z,Y).

We will first find something in the database that says that c is connected to some Z, and then
check if there is a path between Z and Y.
We find a and h as last time. When we check a, we check for pathfrom(a,Y), and find that
connected(a,f) is in the database. The same thing happens for h, which is why f is
reported as an answer twice.

Introduction Prolog

Arithmetic via the is Keyword.

1 fact(0,1).
2 fact(N,X) :- M is N-1, fact(M,Y), X is Y * N.
3 ?- fact(5,X).

I Unify fact(5,X) with fact(N,X).
fact(5,X) :- M is 5-1, fact(M,Y), X is Y * 5.

I Next compute M.
fact(5,X) :- 4 is 5-1, fact(4,Y), X is Y * 5.

I Recursive call sets Y to 24.
fact(5,X) :- 4 is 5-1, fact(4,24), X is 24 * 5.

I Compute X.
fact(5,120) :- 4 is 5-1, fact(4,24), 120 is 24 * 5.

Introduction Prolog

Lists

I Empty list: []
I Singleton list: [x]
I List with multiple elements: [x,y,[a,b],c]
I Head and tail representation: [H|T]

Differences:

I Prolog lists are notmonotonic!

Introduction Prolog

List Example: mylength

The length predicate is built in.

1 mylength([],0).
2 mylength([H|T],X) :- mylength(T,Y),
3 X is Y + 1.
4

5 ?- mylength([2,3,4,5],X).
6 X = 4 ;
7 No

Introduction Prolog

List Example: Sum List

1 sumlist([],0).
2 sumlist([H|T],X) :- sumlist(T,Y),
3 X is Y + H.
4

5 ?- sumlist([2,3,4,5],X).
6 X = 14

Try writing list product now!

Introduction Prolog

List Example: Append

1 myappend([],X,X).
2 myappend([H|T],X,[H|Z]) :- myappend(T,X,Z).
3 ?- myappend([2,3,4],[5,6,7],X).
4 X = [2, 3, 4, 5, 6, 7] ;
5 No
6 ?- myappend(X,[2,3],[1,2,3,4]).
7 No
8 ?- myappend(X,[2,3],[1,2,3]).
9 X = [1] ;
10 No

Introduction Prolog

List Example: Reverse

Accumulator recursion works in Prolog, too!

1 myreverse(X,Y) :- aux(X,Y,[]).
2 aux([],Y,Y).
3 aux([HX|TX],Y,Z) :- aux(TX,Y,[HX|Z]).
4 ?- myreverse([2,3,4],Y).
5 Y = [4, 3, 2]

myreverse([2,3,4],Y)→ aux([2,3,4],Y,[])→ aux([3,4],Y,[2])→
aux([4],Y,[3,2])→ aux([],Y,[4,3,2])→ aux([],[4,3,2],[4,3,2])→
myreverse([2,3,4],[4,3,2])

