Introduction Prolog Introduction Prolog
o 0000 . 0000
oo 0000000¢ 00 0000000

000000 000000
:

Objectives

You should be able to...

Prolog

In this lecture, we will introduce Prolog.
Dr. Mattox Beckman . e . .
» Explain how Prolog uses a unification fo drive computation.

UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN » Write some simple programs in Prolog.
DEPARTMENT OF COMPUTER SCIENCE

Introduction Prolog Introduction Prolog

o 0500000 08 0500000
000000 000000 |

Logic First-Order Predicate Logic

Question: How do you decide truth?

> Start with some objects. First-order predicate logic is one system for encoding these kinds of questions.

P Predicate means that we have functions that take objects and return “true” or “false.”

“socrates,” “john,” “mary”
» Write down some facts (true statements) about those objects. human (socrates) .
> Facts express either properies of the object, or » Logic means that we have connectives like and, or, not, and implication.
“socrates is human” » First order means that we have variables (created by “for all” and “there exists”), but that

» relationship to other objects. they only work on objects

1", I‘k N h 7”
) mary fikes jonn) ¥V X . human(X) — mortal(X).
» Write down some rules (facts that are true if other facts are true).

“if X is human then X is mortal”

» Facts and rules can become predicates.
“is socrates mortal?”

Introduction

Prolog Introduction Prolog
History The Two Questions
i ?
» Starting point: First-order predicate logic. What is the nature of data?
> Realization: computers can reason with this kind of logic. Prolog data consists of facts about objects and logical rules.
» Impetus was the study of mechanical theorem proving
» Developed in 1970 by Alain Colmerauer and Rober Kowalski and others What is the nature of a program?
P> Uses: databases, expert systems, Al
A program in Prolog is a set of facts and rules, followed by a query.
Introduction Prolog Introduction Prolog
The Database Rules

thuman(socrates).
2 fatherof (socrates,
3 jane).

sfatherof (zeus,apollo).

1connected(c,a).
2connected(c,h).
3connected(d,b).
4connected(d,g) .
s connected(a,f).
sconnected(h,f).
7connected(b,e).
sconnected(g,e) .

imortal(X) :- human(X).

2human(Y) :- fatherof(X,Y), human(X).
3

spathfrom(X,Y) :- connected(X,Y).
spathfrom(X,Y) :- connected(X,Z),

6 pathfrom(Z,Y).

» Capital letters are variables.

» Appearing left of : — means “for all”
» Appearing right of : — means “there exists”

Vx.human(x) — mortal(x).

Vy.(3x.fatherof(x,y) A human(x)) — human(y)

Prolog Introduction Prolog
0000

Introduction
How It Works How It Works, Next Step

Programs are executed by searching the database and attempting to perform unification.

17- human(socrates). -- listed, therefore true Replace X with socrates in this rule:
27— mortal(socrates). -- not listed
imortal(X) :- human(X).
Relevant rules: to get
1human(socrates). 1mortal(socrates) :- human(socrates).

2human(Y) :- fatherof(X,Y), human(X).

smortal(X) :- human(X). Since human (socrates) is in the database, we know that mortal (socrates) is also true.

Socrates is not listed as being mortal, but mortal (socrates) unifies with mortal (X) if we
replace X with socrates. This gives us a subgoal. Replace X with socrates and fry if....

Introduction Prolog Introduction Prolog
o 0000 o 0000
oo 00@0000¢ 00 00@0000!
000000 000000
:

Another Example Another Example

> 7- mortal(jane).

> 7- mortal(jane).
mortal(X) :- human(X).

Introduction

Prolog Introduction Prolog
Another Example Another Example
> 7- mortal(jane). » 7- mortal(jane).
mortal(jane) :- human(jane). mortal(jane) :- human(jane).
» human(jane)
= =3 = = o = = =
Introduction Prolog Introduction Prolog
Another Example Another Example
> 7- mortal(jane). » 7- mortal(jane).
mortal(jane) :- human(jane). mortal(jane) :- human(jane).
» human(jane)
human(Y) :- fatherof(X,Y), human(X).

» human(jane)
human (jane)

- fatherof (X, jane), human(X)

Introduction

[e]
[e]e]

Prolog Introduction Prolog
0000 [e] 0000
0080000« [e]e] [e]e] lelelele]
| 000000 000000 |
Another Example Another Example
> 7- mortal(jane). » 7- mortal(jane).
mortal(jane) :- human(jane). mortal(jane) :- human(jane).
» human(jane) » human(jane)
human(jane) :- fatherof (X, jane), human(X). human(jane) :- fatherof(X,jane), human(X)
» fatherof (X, jane) » fatherof (X, jane)
» fatherof (socrates, jane)
o = = = vao o = = = = 9ac
Introduction Prolog Introduction Prolog
%0 00800001 00 0086000
000000 000000 |
Another Example Another Example
> 7- mortal(jane). » 7- mortal(jane).
mortal(jane) :- human(jane). mortal(jane) :- human(jane).
» human(jane) » human(jane)
human(jane) :- fatherof(socrates,jane), human(socrates). human(jane) :- fatherof(socrates,jane), human(socrates).
» fatherof (X, jane) » fatherof (X, jane)
» fatherof (socrates,jane) » fatherof (socrates, jane)
» human(socrates)
o <o

Prolog

Prolog Introduction
0000

0000

Introduction

You Try ...
1exactlybetween(A,B,C) :- connected(A,B), connected(B,C).
» Given the connected rules, fry fo come up with a predicate exactlybetween(A,B,C) 2
that is true when B is connected to both A and C. sbetween(A,B,C) :- pathfrom(A,B), pathfrom(B,C).
» Now make a predicate between (A, B, C) that is true if there’s a path from A to B to C.
Introduction Prolog Introduction Prolog
More Than Just Yes or No Tracing pathfrom
» Prolog can also give you a list of elements that make a predicate true. Remember
unification. 17— pathfrom(c,X).
17— fatherof (Who,apollo). 2 ;(“> pathfrom(c,Y) :- connected(c,Y).
3X = a ;

2Who = zeus

3 When we hit semicolon, we tell it to keep searching. So we backtrack through our database to

47— pathfrom(c,X). try again.
sk =a 1pathfrom(c,Y) :- connected(c,Y).
¢6X = h ;
2-—-> X =h ;
X = £
sX = f ; We tell it to try again with this one, too. At this point, we no longer have any rules that say that
9 No c is connected to something.

The semicolon is entered by the user — it means to keep searching.

Prolog
0000
0000000(
000000

Introduction

[e]
[e]e]

Prolog
0000

Introduction

0000000
©00000

[e]
[e]e]
:

Tracing pathfrom, I|

1pathfrom(c,Y) :- connected(c,Z), pathfrom(Z,Y).

We will first find something in the database that says that ¢ is connected to some Z, and then

Arithmetic via the is Keyword.

1fact(0,1).
2fact(N,X) :- M is N-1, fact(M,Y), X is Y * N.
37- fact(5,X).

» Unify fact(5,X) with fact(N,X).

check if there is a path between Z and Y. fact(5,X) :- M is 5-1, fact(M,Y), X is Y * 5.
We find a and h as last time. When we check a, we check for pathfrom(a,Y), and find that » Next compute M.
connected(a,f) isin the database. The same thing happens for h, which is why £ is fact(5,X) :- 4 is 5-1, fact(4,Y), X is Y * 5.
reported as an answer ftwice. > Recursive call sefs Y to 24.
fact(5,X) :- 4 is 5-1, fact(4,24), X is 24 * 5.
» Compute X.
fact(5,120) :- 4 is 5-1, fact(4,24), 120 is 24 * 5.
Introduction Prolog Introduction Prolog
Lists List Example: mylength

> Empty list: []

» Singleton list: [x]

» List with multiple elements: [x,y, [a,b],c]
» Head and tail representation: [H|T]

Differences:

» Prolog lists are not monotonic!

The 1length predicate is built in.

1mylength([],0).

2mylength([H|T],X) :- mylength(T,Y),
3 X is Y + 1.

4

57— mylength([2,3,4,5],X).

6X = 4 ;

7No

Prolog

Introduction Prolog Introduction
List Example: Sum List List Example: Append

1myappend ([],X,X).

>myappend ([H|T],X, [H|Z]) :- myappend(T,X,Z).
37- myappend([2,3,4],[5,6,7],X).

+X = [2, 3, 4, 5, 6, 7] ;

1sumlist ([]1,0).
2sumlist([H|T],X) :- sumlist(T,Y),

3 X is Y + H.
4 sNo
57— sumlist([2,3,4,5],X). ¢ 7- myappend (X, [2,3],[1,2,3,4]).
«X = 14 7No
e s 7- myappend (X, [2,3],[1,2,3]).
Try writing list product now! _
oX = [1]
10 No
Introduction Prolog

List Example: Reverse

Accumulator recursion works in Prolog, too!

imyreverse(X,Y) :- aux(X,Y,[]).

2aux([1,Y,Y).

saux ([HX|TX],Y,Z) :- aux(TX,Y,[HX|Z]).

47— myreverse([2,3,4],Y).

sY = [4, 3, 2]

myreverse([2,3,4],Y) — aux([2,3,4],Y,[]) = aux([3,4],Y,[2]) —
aux([4],Y,[3,2]) — aux([],Y,[4,3,2]) —aux([]1, [4,3,2],[4,3,2]) —
myreverse([2,3,4], [4,3,2])

