
Introduction Uses of Cut

Prolog’s Cut Operator

Dr. Mattox Beckman

University of Illinois at Urbana-Champaign

Department of Computer Science

Introduction Uses of Cut

Objectives
You should be able to ...

Prolog’s greatest strength is its ability to backtrack to find alternative solutions. If not

controlled, it can also be its greatest weakness. In this lecture, we will go over the cut operator,

which gives a solution to this problem.

I Show how the cut operator stops backtracking.

I Use the cut operator to assert failure.

I Give an example of the limit of the cut operator.

Introduction Uses of Cut

Backtracking

1 color(red).
2 color(blue).
3 car(honda).
4 car(ford).
5 car(toyota).
6

7 ?- color(A), car(B).

1 A = red
2 B = honda ;
3 A = red
4 B = ford ;
5 A = red
6 B = toyota ;
7 A = blue
8 B = honda ;
9 A = blue

10 B = ford ;
11 A = blue
12 B = toyota ;

Come and see the backtracking inherent in the system!

Introduction Uses of Cut

The Cut Operator

I The cut operator (!) stops backtracking.
I It is considered a goal that always succeeds.

1 ?- color(A), !, car(B).
2

3 A = red
4 B = honda ;
5 A = red
6 B = ford ;
7 A = red
8 B = toyota ;
9 No

Introduction Uses of Cut

Commitment

Once a cut is activated, the clause we are trying to satisfy is committed to that choice.

1 color(red).
2 color(green) :- !.
3 color(blue).
4

5 ?- color(X).
6 X = red ;
7 X = green ;
8 No
Once X was set to green, the cut operator forces us to stay with green or else color should

fail completely. Question: Can color(blue) ever be matched?

Introduction Uses of Cut

Factorial Revisited

1 fact(0,1).
2 fact(N,X) :- M is N-1, fact(M,Y),
3 X is Y * N.
4

5 ?- fact(5,N).
6

7 N = 120 ;
8 ERROR: Out of local stack

I What happened here?

Introduction Uses of Cut

Two Fixes

You can add a constraint to the second clause....

1 fact(0,1).
2 fact(N,X) :- N > 0, M is N-1, fact(M,Y),
3 X is Y * N.
Or you can add a cut to the first clause.

1 fact(0,1) :- !.
2 fact(N,X) :- M is N-1, fact(M,Y),
3 X is Y * N.
Now it will work:

1 ?- fact(5,N).
2 N = 120 ;
3 No

Introduction Uses of Cut

Efficiency

Suppose you run the campus observatory. You want to allow certain people to use the

telescope. They have to be a student, a faculty member, or a member of the astronomy club.

And they also need to have been trained on the telescope.

students anna, beth, cindy, david

faculty ernest, frank, gloria

astronomy club anna, frank, harry

trained anna, harry

Introduction Uses of Cut

Can frank Use the Telescope?

1 telescope(X) :- (student(X); faculty(X); club(X)),
2 trained(X).

I frank is a faculty, and also a member of the club.

I But, frank doesn’t have any training.

What will telescope(frank). do?

Introduction Uses of Cut

Who Can Use the Telescope?

1 telescope(X) :- (student(X); faculty(X); club(X)),
2 trained(X).
3

4 ?- telescope(X).
5 X = anna ;
6 X = anna ;
7 X = harry ;

Since anna is a student and a member of the club, she gets listed twice.

Introduction Uses of Cut

NowWe Cut ...

1 telescope(X) :- (student(X); faculty(X); club(X)),
2 !,
3 trained(X).
4

5 ?- telescope(X).
6 X = anna ;
7 No

I Oops. Now we’ve dissed harry.
I But at least we don’t spend a lot of time when we ask if frank can use the telescope....

I Moral: cut will limit your choices to only one answer.

Introduction Uses of Cut

Inducing Failure

I We also have a predicate called fail, which, well, always fails.
I Suppose anna has her telescope privileges revoked....

1 telescope(anna) :- fail.
2 telescope(X) :- (student(X); faculty(X); club(X)),
3 trained(X).
4

5 ?- telescope(anna).
6 Yes.

This is less than what we hoped for.

Introduction Uses of Cut

Inducing Failure, II

1 telescope(anna) :- !, fail.
2 telescope(X) :- (student(X); faculty(X); club(X)),
3 trained(X).
4

5 ?- telescope(anna).
6 No
7 ?- telescope(harry).
8 Yes
9 ?- telescope(X).

10 No

But cut and fail will work.

Introduction Uses of Cut

Conclusions

I Cut can stop searches that you already know will be useless.

I Cut can make queries more efficient.

I But, cut can make queries do strange things. Use with care.

Aside: you can define not (actually, it’s built in) this way:

1 not(X) :- call(X), !, fail.
2 not(X).

This predicate can fix the telescope problems.

