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Objectives
You should be able to ...

You can often tell what the language designers thought about their language by the libraries

that are included with it. Many of Prolog’s involve the analysis of structures. In this lecture, we

will go over some of the builtin predicates of Prolog.

I Use findall and checklist to perform queries over a range.

I Use call and assert to modify Prolog’s database.

I Use deconstruction operations to examine data in Prolog.
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Two Useful List Predicates

I findall(X,T,Y) finds all values of X that make T true, and puts them into Y.
I checklist(P,Y) is true if predicate P is true for all values in list Y.

1 ?- findall(X,possible(X),Xs).
2 X = G306
3 Xs = [anna, beth, cindy, david, ernest, frank, gloria, harry]
4 ?- checklist(student,[anna,beth]).
5 Yes
6 ?- checklist(student,[anna,harry]).
7 No

How could you write functions like these?
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Examine Thyself

One power that Prolog programs have is the ability to examine and modify themselves.

I Used for AI – real learning requires the ability to “examine yourself.”

I Prolog structures and Prolog programs have the same form.

I Assembly language: bit patterns
I Scheme and Lisp: lists
I Prolog: structures

I A language with this property is called homoiconic.

1 likes(john,mary).
2 ?- isbst(bst(5,null,null)).

Functors: likes, isbst, and bst.
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Types of a Term

We have predicates that will determine the type of a term.

1 ?- atom(3).
2 No
3 ?- atom(hi).
4 Yes
5 ?- atomic(3).
6 Yes
7 ?- integer(3).
8 Yes
9 ?- integer(f).

10 No

1 ?- X = 20, integer(X).
2 X = 20
3 Yes
4 ?- var(X).
5 Yes
6 ?- X = 20, var(X).
7 No
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Name

The name predicate turns a term into a string (and back).

1 ?- name(foo,X).
2 X = [102, 111, 111]
3 ?- name(X,"foo").
4 X = foo
5 chop(X,Y) :- name(X,[_|S]), name(Y,S).
6 ?- chop(asymmetric,X).
7 X = symmetric

This will be very useful for natural language processing.
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Look What You’ve Done!

I The listing predicate will print out the definitions we have so far.

1 ?- listing(mortal).
2

3 mortal(A) :-
4 human(A).
5

6 Yes
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Accessing Parts of Functors

I functor(T,F,N) – F will contain the name of the functor, N will contain the number of

arguments.

I arg(N,T,A) – A will be argument number N of T.

1 -? functor(isbst(5,null,null),F,N).
2 F = isbst
3 N = 3
4 -? arg(1,isbst(5,null,null),A).
5 A = 5
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The =.. Operator

Another way to deconstruct terms is with “=..”.

1 ?- bst(5,null,null) =.. L.
2 L = [bst, 5, null, null] ;
3 ?- L =.. [likes,john,X].
4 L = likes(john, _G276)
5 X = _G276
6 ?- (mortal(X) :- human(X)) =.. L.
7 X = _G324
8 L = [ (:-), mortal(_G324), human(_G324)]

Note that :- is a functor!
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Database Modification

I assert allows you to modify things while Prolog is running.

I This only works for “dynamic” procedures, though.

I retract allows you to undo an assertion.

1 ?- assert(prime(2)).
2 ?- assert(prime(3)).
3 ?- assert(prime(5)).
4 ?- assert(prime(7)).
5 ?- prime(3).
6 Yes
7 ?- retract(prime(3)).
8 ?- prime(3).
9 No
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Making Things Dynamic

1 ?- dynamic likes/2.
2 ?- likes(john,mary).
3 No
4 ?- assert(likes(X,Y) :- likes(Y,X)).
5 ?- assert(likes(john,mary)).
6 ?- likes(mary,X).
7 ERROR: Out of local stack
8 ?- retract(likes(john,mary)).
9 Yes

10 ?- asserta(likes(john,mary)).
11 Yes
12 ?- likes(mary,X).
13 X = john
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Executing Code

I The call predicate will execute its argument.

I Note that implications are asserted, not called.

1 ask_about(X,Y) :- Q =.. [Y,X], call(Q).
2 ?- ask_about(socrates,mortal).
3 Yes
4 ?- call(funny(X) :- human(X)).
5 ERROR: Undefined procedure: (:-)/2
6 ?- assert(funny(X) :- human(X)).
7 X = _G324
8 Yes
9 ?- funny(X).

10 X = socrates
11 X = muller
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Example: answer

Now you can use Prolog to keep track of students’ questions.

1 answer(X) :- question(X,Q), !, write(Q),
2 retract(question(X,Q)), call(Q).
3 ?- assert(question(jonny,mortal(muller))).
4 ?- assert(question(jonny,mortal(socrates))).
5 ?- answer(jonny).
6 mortal(muller)
7 Yes
8 ?- answer(jonny).
9 mortal(socrates)

10 Yes
11 ?- answer(jonny).
12 No
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