
Introduction Examining Terms Modifying the Databse

Dynamic Prolog

Dr. Mattox Beckman

University of Illinois at Urbana-Champaign

Department of Computer Science

Introduction Examining Terms Modifying the Databse

Objectives
You should be able to ...

You can often tell what the language designers thought about their language by the libraries

that are included with it. Many of Prolog’s involve the analysis of structures. In this lecture, we

will go over some of the builtin predicates of Prolog.

I Use findall and checklist to perform queries over a range.

I Use call and assert to modify Prolog’s database.

I Use deconstruction operations to examine data in Prolog.

Introduction Examining Terms Modifying the Databse

Two Useful List Predicates

I findall(X,T,Y) finds all values of X that make T true, and puts them into Y.
I checklist(P,Y) is true if predicate P is true for all values in list Y.

1 ?- findall(X,possible(X),Xs).
2 X = G306
3 Xs = [anna, beth, cindy, david, ernest, frank, gloria, harry]
4 ?- checklist(student,[anna,beth]).
5 Yes
6 ?- checklist(student,[anna,harry]).
7 No

How could you write functions like these?

Introduction Examining Terms Modifying the Databse

Examine Thyself

One power that Prolog programs have is the ability to examine and modify themselves.

I Used for AI – real learning requires the ability to “examine yourself.”

I Prolog structures and Prolog programs have the same form.

I Assembly language: bit patterns
I Scheme and Lisp: lists
I Prolog: structures

I A language with this property is called homoiconic.

1 likes(john,mary).
2 ?- isbst(bst(5,null,null)).

Functors: likes, isbst, and bst.

Introduction Examining Terms Modifying the Databse

Types of a Term

We have predicates that will determine the type of a term.

1 ?- atom(3).
2 No
3 ?- atom(hi).
4 Yes
5 ?- atomic(3).
6 Yes
7 ?- integer(3).
8 Yes
9 ?- integer(f).

10 No

1 ?- X = 20, integer(X).
2 X = 20
3 Yes
4 ?- var(X).
5 Yes
6 ?- X = 20, var(X).
7 No

Introduction Examining Terms Modifying the Databse

Name

The name predicate turns a term into a string (and back).

1 ?- name(foo,X).
2 X = [102, 111, 111]
3 ?- name(X,"foo").
4 X = foo
5 chop(X,Y) :- name(X,[_|S]), name(Y,S).
6 ?- chop(asymmetric,X).
7 X = symmetric

This will be very useful for natural language processing.

Introduction Examining Terms Modifying the Databse

Look What You’ve Done!

I The listing predicate will print out the definitions we have so far.

1 ?- listing(mortal).
2

3 mortal(A) :-
4 human(A).
5

6 Yes

Introduction Examining Terms Modifying the Databse

Accessing Parts of Functors

I functor(T,F,N) – F will contain the name of the functor, N will contain the number of

arguments.

I arg(N,T,A) – A will be argument number N of T.

1 -? functor(isbst(5,null,null),F,N).
2 F = isbst
3 N = 3
4 -? arg(1,isbst(5,null,null),A).
5 A = 5

Introduction Examining Terms Modifying the Databse

The =.. Operator

Another way to deconstruct terms is with “=..”.

1 ?- bst(5,null,null) =.. L.
2 L = [bst, 5, null, null] ;
3 ?- L =.. [likes,john,X].
4 L = likes(john, _G276)
5 X = _G276
6 ?- (mortal(X) :- human(X)) =.. L.
7 X = _G324
8 L = [(:-), mortal(_G324), human(_G324)]

Note that :- is a functor!

Introduction Examining Terms Modifying the Databse

Database Modification

I assert allows you to modify things while Prolog is running.

I This only works for “dynamic” procedures, though.

I retract allows you to undo an assertion.

1 ?- assert(prime(2)).
2 ?- assert(prime(3)).
3 ?- assert(prime(5)).
4 ?- assert(prime(7)).
5 ?- prime(3).
6 Yes
7 ?- retract(prime(3)).
8 ?- prime(3).
9 No

Introduction Examining Terms Modifying the Databse

Making Things Dynamic

1 ?- dynamic likes/2.
2 ?- likes(john,mary).
3 No
4 ?- assert(likes(X,Y) :- likes(Y,X)).
5 ?- assert(likes(john,mary)).
6 ?- likes(mary,X).
7 ERROR: Out of local stack
8 ?- retract(likes(john,mary)).
9 Yes

10 ?- asserta(likes(john,mary)).
11 Yes
12 ?- likes(mary,X).
13 X = john

Introduction Examining Terms Modifying the Databse

Executing Code

I The call predicate will execute its argument.

I Note that implications are asserted, not called.

1 ask_about(X,Y) :- Q =.. [Y,X], call(Q).
2 ?- ask_about(socrates,mortal).
3 Yes
4 ?- call(funny(X) :- human(X)).
5 ERROR: Undefined procedure: (:-)/2
6 ?- assert(funny(X) :- human(X)).
7 X = _G324
8 Yes
9 ?- funny(X).

10 X = socrates
11 X = muller

Introduction Examining Terms Modifying the Databse

Example: answer

Now you can use Prolog to keep track of students’ questions.

1 answer(X) :- question(X,Q), !, write(Q),
2 retract(question(X,Q)), call(Q).
3 ?- assert(question(jonny,mortal(muller))).
4 ?- assert(question(jonny,mortal(socrates))).
5 ?- answer(jonny).
6 mortal(muller)
7 Yes
8 ?- answer(jonny).
9 mortal(socrates)

10 Yes
11 ?- answer(jonny).
12 No

	Introduction
	Objectives

	Examining Terms
	Modifying the Databse
	Modifying the Databse

