Introduction Static vs. Dynamic Binding Value Typing Location Scoping Introduction Static vs. Dynamic Binding Value Typing Location

|] [e]e]] 000 000 0000 L] 00 [e] 000 000 Socgggg |
Objectives
You should be able to ...
Variables Variables have many different attributes. These attributes can become bound to the variable at
different times.
» Explain the difference between static and dynamic binding.
Dr. Mattox Beckman > Of value
» Of types
UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN > Of| .
DEPARTMENT OF COMPUTER SCIENCE Ocaf_lon
» Of scoping (!)
» Give examples of implicit and explicit declaration.
» Give an example of aliasing is.
Introduction Static vs. Dynamic Binding Value Typing Location Scoping Introduction Static vs. Dynamic Binding Value Typing Location Scoping
: o 0 o 000 000 0000 o oce o [e]e]e] 000 0000 :
What Is a Variable? Static vs. Dynamic Binding

Static Binding

Attribute is bound at compile time.
Mathematically

» Allows the compiler to “hard code” information about the variable into the executable

Variables represent a (possibly unknown) quantity or value. They usually are part of a model code

or abstraction) of some concept or system. . o . .
() P Y » Allows the compiler to perform optimizations based on its knowledge of the variable

f(x) = 2™ — x Do
Dynamic Binding

) Attribute is bound at run fime.
Programming

» A variable’s attribute could change during the course of execution, or remain

Variables are implementations of mathematical variables. (Has anyone here read Plato?) undetermined - very flexible.

» Information about the variable is usually stored with if.

» Sometimes we don’t know the value of the attribute at compile time.

Introduction Static vs. Dynamic Binding Value Typing Location Scoping Introduction Static vs. Dynamic Binding Value Typing Location Scoping

|] [e]e] L] 000 000 0000] 00 [e] @00 000 0000 |
Value Static Typing
» The value attribute of a variable is most likely fo be dynamic.
» Sometimes we want the value to be static. (Not to be confused with the static keyword > Static typing: the type of variables are known at compile time.
inC.) » This makes many operations very efficient.
Static Value 1 int sqr(int i) { 1 movi ri, val(i)
. comst int i = 2; 2 2 movi r2, val(i)
5 3 return i * i; 3 multi ri1,r2,r3
3 int foo(int j) { return i * j; } +) ! pushi r3
4 » The compiler can catch errors: improving programmer reliability.
5 inF baf() { 1 string s = "hi";
6 }nt 1= ?O; 2 bool b = true;
7 i = foo(i); 3 if s then printf("4") else printf("9");
8 return i;
s
Introduction Static vs. Dynamic Binding Value Typing Location Scoping Introduction Static vs. Dynamic Binding Value Typing Location Scoping
: o [e]e] o oeo 000 0000 o [e]e] (e} ooe 000 0000 :
Dynamic Typing Polymorphism
» We can have both the advantages of strong typing and dynamic typing at the same time!
Some languages (e.g., BASIC, PERL most shell languages, TCL) use dynamic typing. Overloading
, .
v #!/usr/bin/perl int identity(int i) { returm i; }
:) double identity(double x) { return x; }
3 $i = "The answer is ";

4 print "$i"; .
P Parameterized

¢ $i = 42; template <class T>

7 print "$i\n"; T ident(T &i) { return i; }

Actually, PERL types are partially dynamic. Scalars, arrays, and hashes are represented with)
different syntax. Automatic
let id x = x;;

val id : 'a -> 'a = <fun>

Introduction Static vs. Dynamic Binding Value Typing Location Scoping Introduction Static vs. Dynamic Binding Value Typing Location Scoping
[e) 00 [e) 000 ©00 0000 [e) 00 o) 000 000 0000
: :

Location FORTRAN

» Heap allocated variables - completely dynamic The Problem

> Stack allocated variables - partially static “stack relative” allocation » First released on the IBM 704 in 1957. It had core memory (equivalent to 18,432 bytes)

1 int length() { and a 12k FLOP processor.
2 int i = 10; » Can we use a high level language and translate it to machine code?
3 String s = new String("hello");
i+ 1 h ; ; ; i
! 3 return 1 ength(s); The Solution: Hard-Code Variable Locations
5
» This made FORTRAN almost as fast as assembly.

Weird Language » It is still the language of choice for numerical computation.

There is one language in which all variables - even function arguments - are allocated > Downside - you don’t get recursion. (Modern FORTRAN fixes this.)

statically!

Introduction Static vs. Dynamic Binding Value Typing Location Scoping Introduction Static vs. Dynamic Binding Value Typing Location Scoping
: o [e]e] o [e]e]e) ooe 0000 o [e]e] (e} [e]e]e) 000 @000 :
Aliasing Lifetime
» Variables have a certain scope in the program for which they are valid.

It is possible for multiple variables to refer to the same location. » This allows us to have multiple variables with the same name.
1 dint i = 20; » Usually the scope (or lifetime) is determined syntactically.
2 1 int foo(int i) {
3 void inc(int &x) { 2 int j = 10;
4 x=x+1; 3 return j + 10;
s} 4
6 // after this % and =z will be the same! s
7 ... inc(i) ... ¢ int bar(int i) {

Use with extreme caution! 7 int j = 20;

8 return foo(j) + foo(i);

s

Introduction Static vs. Dynamic Binding Value Typing Location Scoping Introduction Static vs. Dynamic Binding Value Typing Location Scoping

] [e]e]] 000 000 [e] Jele}] 00 [e] 000 000 [e]e] I}
!

Example in C Example in Emacs Lisp

Consider the following program:
1 (setq i 2) ;5 global wariable 7 = 2
1 dint 1 = 2;

3 (defun foo ()
4 (x i 1))

3 int foo() { return i * i; }

s int bar() { 6 (defun bar ()

6 int i = 10; 7 (let ((i 10)) ;5 local wariable i = 10
7 N return foo(); 8 (£f00))) ;5 call function foo
8

» What value will expression (bar) return?
> 4
> 100

» What value will function bar return?
> 4
> 100

Introduction Static vs. Dynamic Binding Value Typing Location Scoping

(] [ele} (] 000 000 ocooe
!

Static vs. Dynamic Scoping

» Most languages use static scoping.
» The first Lisp implementations used dynamic scoping.

» Today it is considered to be a Bad Thing™ by most sentient life-forms.
» Asalways, some disagree ...

» It's foo easy to modify the behavior of a function.

» Correct use requires knowledge of a function’s internals.

Still used by Emacs LisP!

