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Objectives
You should be able to ...

Variables have many different attributes. These attributes can become bound to the variable at

different times.

I Explain the difference between static and dynamic binding.

I Of value
I Of types
I Of location
I Of scoping (!)

I Give examples of implicit and explicit declaration.

I Give an example of aliasing is.
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What Is a Variable?

Mathematically

Variables represent a (possibly unknown) quantity or value. They usually are part of a model

(or abstraction) of some concept or system.

f(x) = 2iπ − x

Programming

Variables are implementations of mathematical variables. (Has anyone here read Plato?)
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Static vs. Dynamic Binding

Static Binding

Attribute is bound at compile time.

I Allows the compiler to “hard code” information about the variable into the executable

code

I Allows the compiler to perform optimizations based on its knowledge of the variable

Dynamic Binding

Attribute is bound at run time.

I A variable’s attribute could change during the course of execution, or remain

undetermined – very flexible.

I Information about the variable is usually stored with it.

I Sometimes we don’t know the value of the attribute at compile time.
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Value

I The value attribute of a variable is most likely to be dynamic.

I Sometimes we want the value to be static. (Not to be confused with the static keyword
in C.)

Static Value

1 const int i = 2;
2

3 int foo(int j) { return i * j; }
4

5 int bar() {
6 int i = 10;
7 i = foo(i);
8 return i;
9 }

Introduction Static vs. Dynamic Binding Value Typing Location Scoping

Static Typing

I Static typing: the type of variables are known at compile time.

I This makes many operations very efficient.

1 int sqr(int i) {
2

3 return i * i;
4 }

1 movi r1, val(i)
2 movi r2, val(i)
3 multi r1,r2,r3
4 pushi r3

I The compiler can catch errors: improving programmer reliability.

1 string s = "hi";
2 bool b = true;
3 if s then printf("4") else printf("9");
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Dynamic Typing

Some languages (e.g., BASIC, Perlmost shell languages, TCL) use dynamic typing.

1 #!/usr/bin/perl
2

3 $i = "The answer is ";
4 print "$i";
5

6 $i = 42;
7 print "$i\n";

Actually, Perl types are partially dynamic. Scalars, arrays, and hashes are represented with

different syntax.
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Polymorphism

I We can have both the advantages of strong typing and dynamic typing at the same time!

Overloading

int identity(int i) { return i; }
double identity(double x) { return x; }

Parameterized

template <class T>
T ident(T &i) { return i; }

Automatic

# let id x = x;;
val id : 'a -> 'a = <fun>
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Location

I Heap allocated variables – completely dynamic

I Stack allocated variables – partially static “stack relative” allocation

1 int length() {
2 int i = 10;
3 String s = new String("hello");
4 return i + length(s);
5 }

Weird Language

There is one language in which all variables – even function arguments – are allocated

statically!
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Fortran

The Problem

I First released on the IBM 704 in 1957. It had core memory (equivalent to 18,432 bytes)

and a 12k FLOP processor.

I Can we use a high level language and translate it to machine code?

The Solution: Hard-Code Variable Locations

I This made Fortran almost as fast as assembly.

I It is still the language of choice for numerical computation.

I Downside – you don’t get recursion. (Modern Fortran fixes this.)
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Aliasing

It is possible for multiple variables to refer to the same location.

1 int i = 20;
2

3 void inc(int &x) {
4 x = x + 1;
5 }
6 // after this i and x will be the same!
7 ... inc(i) ...

Use with extreme caution!
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Lifetime

I Variables have a certain scope in the program for which they are valid.

I This allows us to have multiple variables with the same name.

I Usually the scope (or lifetime) is determined syntactically.

1 int foo(int i) {
2 int j = 10;
3 return j + 10;
4 }
5

6 int bar(int i) {
7 int j = 20;
8 return foo(j) + foo(i);
9 }
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Example in C

Consider the following program:

1 int i = 2;
2

3 int foo() { return i * i; }
4

5 int bar() {
6 int i = 10;
7 return foo();
8 }

I What value will function bar return?
I 4
I 100
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Example in Emacs Lisp

1 (setq i 2) ;; global variable i = 2
2

3 (defun foo ()
4 (* i i))
5

6 (defun bar ()
7 (let ((i 10)) ;; local variable i = 10
8 (foo))) ;; call function foo

I What value will expression (bar) return?
I 4
I 100
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Static vs. Dynamic Scoping

I Most languages use static scoping.

I The first Lisp implementations used dynamic scoping.

I Today it is considered to be a Bad ThingTM by most sentient life-forms.
I As always, some disagree ...

I It’s too easy to modify the behavior of a function.

I Correct use requires knowledge of a function’s internals.

Still used by Emacs Lisp!


