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Objectives
You should be able to ...

The function call is one of the most fundamental elements of programming. The meaning of a

function call is greatly affected by the choice of parameter passing style.

I Explain five kinds of parameter passing:

1. Call by value

2. Call by reference

3. Call by name

4. Call by need

5. Call by value-result
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Running Example

We will use the following code to illustrate the concepts:

let foo x y z =
x := z * z * y; (* let's pretend that this *)
y := 5; (* is legal *)
x + y

let main () =
let a = 10 in
let b = 20 in

foo a b (a+b)
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Call By Value

I Arguments are evaluated before the function call takes place.

I The function receives a copy of the arguments.

I Changes made to variables in the function are not visible outside.

I Advantage: speed

I Disadvantage: instability

Main> let pi1 a b = a
pi1 : a -> b -> a
Main> let foo () = pi1 5 (foo ())
foo : () -> Int
Main> foo ()
Stack overflow during evaluation (looping recursion?).
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Result of CBV

let foo x y z =
x := z * z * y;
y := 5;
x + y

let main () =
let a = 10 in
let b = 20 in

foo a b (a+b)

I a is copied into x.
I b is copied into y.
I a+b is evaluated to 30, the 30 is copied into z.
I x is assigned 30 * 30 * 20.

I y is assigned 5.

I Upon return, a and b have their original values.

I This is used by C, C++, OCaml, …“most languages.”
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Call By Reference

I Arguments are evaluated before the function call takes place.

I The function receives a copy of the arguments.

I Variables are passed as pointers.

I Changes made to variables in the function are visible outside.

I Advantages: speed, saves some memory, side effects are possible when you want them.

I Disadvantage: side effects are possible when you don’t want them.
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Result of Call By Reference

let foo x y z =
x := z * z * y;
y := 5;
x + y

let main () =
let a = 10 in
let b = 20 in

foo a b (a+b)

I a and x share the same

memory.

I b and y share the same

memory.

I a+b is evaluated to 30,

the 30 is copied into z.
I x and a are assigned 30

* 30 * 20.

I y and b are assigned 5.

I Upon return, a and b have new values.

I Used by C, C++,OCaml optionally; Java by default.
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Example

int inc(int i) {
return ++i;

}

int main() {
int i = 10;
cout << inc(i) << " " << i << endl;

}

What will be the output of this code?
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Example

int inc(int &i) {
return ++i;

}

int main() {
int i = 10;
cout << inc(i) << " " << i << endl;

}

What will be the output of this code?
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Call By Result

I Arguments are updated before the function call returns.

I Often combined with call by value. Call by result, call by value, and call by value-result
are “subclasses” of call by copy. What changes is when the copy occurs.

I Changes made to variables in the function are visible outside – in fact, that’s the whole point.

I Advantage: you can return multiple values from a single function.

I Disadvantage: variables can be clobbered inadvertently.
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Result of Call By Result
let a = 10
let b = 20

let foo x y z =
x := z * z * y;
y := 5;
a + b

let main () =
foo a b (a+b)

I a is copied into x.
I b is copied into y.
I a+b is evaluated to 30,

the 30 is copied into z.
I x is assigned 30 * 30 *

20.

I y is assigned 5.

I a + b will evaluate to 30

I Upon return, x is copied into a, and y is copied into b.
I This is used by C# via “out” parameters.
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Call By Name

I Arguments are evaluated after the function call is made.

I The arguments are substituted into the function body.

I Advantage: stability

I Disadvantage: inefficiency – computations can be duplicated.

Main> let pi1 a b = a
pi1 : a -> b -> a
Main> let foo () = pi1 5 (foo ())
foo : () -> Int
Main> foo ()
5
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Result of Call By Name

let foo x y z =
x * x + y * y

let main () =
foo (10+10) (20+20)

(main ())

I x is replaced by (10+10).
I y is replaced by (20+20).
I z is replaced by (main ()).
I The call to main via z never happens.

I The + operation happens five times.

I This was used by Algol. Also used by some “term rewriting” systems.
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Call By Need

I Arguments are encapsulated into a thunk.

I The thunks are passed into the function.

I The first time a thunk is executed, the value is cached.

I Remaining executions use the cached value.

I Advantage: stability

I Disadvantage: efficient, but sensitive to order

Main> let pi1 a b = a
pi1 : a -> b -> a
Main> let foo () = pi1 5 (foo ())
foo : () -> Int
Main> foo ()
5
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Result of Call By Need

let foo x y z =
x * x + y * y

let main () =
foo (10+10) (20+20)

(main ())

I x is replaced by a

pointer to (10+10).
I y is replaced by a

pointer to (20+20).
I z is replaced by a

pointer to (main ()).
I The call to main via z never happens.

I The + operation happens only once for each variable.

I This is used byHaskell. Also known as lazy evaluation.

I Not compatible with assignment.


