
Introduction Eager Styles Lazy Styles

Parameter Passing Styles

Dr. Mattox Beckman

University of Illinois at Urbana-Champaign

Department of Computer Science

Introduction Eager Styles Lazy Styles

Objectives
You should be able to ...

The function call is one of the most fundamental elements of programming. The meaning of a

function call is greatly affected by the choice of parameter passing style.

I Explain five kinds of parameter passing:

1. Call by value

2. Call by reference

3. Call by name

4. Call by need

5. Call by value-result

Introduction Eager Styles Lazy Styles

Running Example

We will use the following code to illustrate the concepts:

let foo x y z =
x := z * z * y; (* let's pretend that this *)
y := 5; (* is legal *)
x + y

let main () =
let a = 10 in
let b = 20 in

foo a b (a+b)

Introduction Eager Styles Lazy Styles

Call By Value

I Arguments are evaluated before the function call takes place.

I The function receives a copy of the arguments.

I Changes made to variables in the function are not visible outside.

I Advantage: speed

I Disadvantage: instability

Main> let pi1 a b = a
pi1 : a -> b -> a
Main> let foo () = pi1 5 (foo ())
foo : () -> Int
Main> foo ()
Stack overflow during evaluation (looping recursion?).



Introduction Eager Styles Lazy Styles

Result of CBV

let foo x y z =
x := z * z * y;
y := 5;
x + y

let main () =
let a = 10 in
let b = 20 in

foo a b (a+b)

I a is copied into x.
I b is copied into y.
I a+b is evaluated to 30, the 30 is copied into z.
I x is assigned 30 * 30 * 20.

I y is assigned 5.

I Upon return, a and b have their original values.

I This is used by C, C++, OCaml, …“most languages.”

Introduction Eager Styles Lazy Styles

Call By Reference

I Arguments are evaluated before the function call takes place.

I The function receives a copy of the arguments.

I Variables are passed as pointers.

I Changes made to variables in the function are visible outside.

I Advantages: speed, saves some memory, side effects are possible when you want them.

I Disadvantage: side effects are possible when you don’t want them.

Introduction Eager Styles Lazy Styles

Result of Call By Reference

let foo x y z =
x := z * z * y;
y := 5;
x + y

let main () =
let a = 10 in
let b = 20 in

foo a b (a+b)

I a and x share the same

memory.

I b and y share the same

memory.

I a+b is evaluated to 30,

the 30 is copied into z.
I x and a are assigned 30

* 30 * 20.

I y and b are assigned 5.

I Upon return, a and b have new values.

I Used by C, C++,OCaml optionally; Java by default.

Introduction Eager Styles Lazy Styles

Example

int inc(int i) {
return ++i;

}

int main() {
int i = 10;
cout << inc(i) << " " << i << endl;

}

What will be the output of this code?



Introduction Eager Styles Lazy Styles

Example

int inc(int &i) {
return ++i;

}

int main() {
int i = 10;
cout << inc(i) << " " << i << endl;

}

What will be the output of this code?

Introduction Eager Styles Lazy Styles

Call By Result

I Arguments are updated before the function call returns.

I Often combined with call by value. Call by result, call by value, and call by value-result
are “subclasses” of call by copy. What changes is when the copy occurs.

I Changes made to variables in the function are visible outside – in fact, that’s the whole point.

I Advantage: you can return multiple values from a single function.

I Disadvantage: variables can be clobbered inadvertently.

Introduction Eager Styles Lazy Styles

Result of Call By Result
let a = 10
let b = 20

let foo x y z =
x := z * z * y;
y := 5;
a + b

let main () =
foo a b (a+b)

I a is copied into x.
I b is copied into y.
I a+b is evaluated to 30,

the 30 is copied into z.
I x is assigned 30 * 30 *

20.

I y is assigned 5.

I a + b will evaluate to 30

I Upon return, x is copied into a, and y is copied into b.
I This is used by C# via “out” parameters.

Introduction Eager Styles Lazy Styles

Call By Name

I Arguments are evaluated after the function call is made.

I The arguments are substituted into the function body.

I Advantage: stability

I Disadvantage: inefficiency – computations can be duplicated.

Main> let pi1 a b = a
pi1 : a -> b -> a
Main> let foo () = pi1 5 (foo ())
foo : () -> Int
Main> foo ()
5



Introduction Eager Styles Lazy Styles

Result of Call By Name

let foo x y z =
x * x + y * y

let main () =
foo (10+10) (20+20)

(main ())

I x is replaced by (10+10).
I y is replaced by (20+20).
I z is replaced by (main ()).
I The call to main via z never happens.

I The + operation happens five times.

I This was used by Algol. Also used by some “term rewriting” systems.

Introduction Eager Styles Lazy Styles

Call By Need

I Arguments are encapsulated into a thunk.

I The thunks are passed into the function.

I The first time a thunk is executed, the value is cached.

I Remaining executions use the cached value.

I Advantage: stability

I Disadvantage: efficient, but sensitive to order

Main> let pi1 a b = a
pi1 : a -> b -> a
Main> let foo () = pi1 5 (foo ())
foo : () -> Int
Main> foo ()
5

Introduction Eager Styles Lazy Styles

Result of Call By Need

let foo x y z =
x * x + y * y

let main () =
foo (10+10) (20+20)

(main ())

I x is replaced by a

pointer to (10+10).
I y is replaced by a

pointer to (20+20).
I z is replaced by a

pointer to (main ()).
I The call to main via z never happens.

I The + operation happens only once for each variable.

I This is used byHaskell. Also known as lazy evaluation.

I Not compatible with assignment.


